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SPECTRAL ANALYSIS

● Fourier-based power spectrum analysis

● Joint time-frequency analysis

● The short-time Fourier transform

● Spectrogram

● Example

● Example

● Window functions

● Example of spectrogram

● (Coherence function)

● (Example of coherence function)
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● The estimated power spectrum (periodogram) of a stationary signal  x[n]          
  (x[n] is assumed to be zero outside the interval  [0, N - 1]), is obtained by         
  computing the squared magnitude of the N-point DTFT of  x[n]

● Since N-point DFT completely specifies the DTFT of a finite duration sequence  
  of length N samples, the estimated power spectrum (periodogram) of a             
  stationary signal  x[n]  can simply be computed following

● Parseval’s theorem expresses the energy in the finite duration sequence  x[n]  
  in terms of the frequency components X[k]

Fourier-based power spectrum analysis
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● A major limitation of Fourier-based spectral analysis is its inability to provide      
  information on when in time different frequencies of a signal occur
● The Fourier transform only reflects which frequencies exist during the total        
  observation interval, because the Fourier transform integrates frequency           
  components over the total observation interval
● While such spectral analysis is adequate for stationary signals whose                 
  frequencies, on average, are equally spread in time, it is inadequate for non-     
  stationary signals with time dependent spectral content
● There is strong motivation for the development of methods that analyze            
  signals with regard to both time and frequency so that the frequencies present  
  at each instant in time can be displayed
● Joint time-frequency information has been found extremely valuable for many   
  types of biomedical signals exhibiting non-stationary characteristics

Joint time-frequency analysis



4
Course: 63514 Biomedical signal and image processing

●  The short-time Fourier transform is a classical non-parametric method to          
   obtain time-frequency representation by linear filtering operation 

 

● In the short-time Fourier transform, a sliding time window   w (t  -  τ)   is used    
  for excerpting successive parts of the signal  x(t)

The short-time Fourier transform

(Sornmo, Laguna)
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● In this approach, the definition of the Fourier transform is modified so that a      
  sliding time window  w(t)  is included that defines each time segment to be        
  analyzed, thus resulting in a two-dimensional function  X (t, Ω)  defined by:

 where  Ω  denotes analog frequency

The short-time Fourier transform

(Sornmo, Laguna)

X (t ,Ω ) = ∫
−∞

∞

x (τ)w (τ − t ) e− jΩ τ d τ
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The short-time Fourier transform
● Divide a signal into short segments

● Calculate amplitude spectrum for each segment

● Compose time series of spectra

● Short-time Fourier transform of word “devet”

S (n1 ,ω) S (n2 , ω)

S (n0 ,ω)

S (n0 ,ω)

S (n1 ,ω)

S (n2 ,ω)
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●  Analogous to the computation of the periodogram, which was obtained as the  
   squared magnitude of the Fourier transform of the signal:

  the spectrogram,  Sx(t, Ω),  of   x(t)   is obtained by computing the squared       
   magnitude of the short-time Fourier transform:

  where

●  The spectrogram,  Sx(t, Ω),  is a real-valued, nonnegative distribution which      
    provides a signal representation in the time-frequency domain

Spectrogram
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● (a) The EEG recorded during heart surgery of an infant (time scale from 0 to 300 sec)             
  (b) The spectrogram displays a drastic reduction in high-frequency content after 100 s,          
         partially reverting at about 200 s

Example

(Sornmo, Laguna)
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● (Upper) 30-minute excerpt of the EMG of uterus recorded from the abdomen showing             
   contractions (the pregnancy ended in pre-term delivery)

 (Lower) The spectrogram, the power spectra, from 0 Hz to 5.0 Hz (the width of sliding             
   window is 256 samples, 12.8 sec, Fs = 20 smp/sec)

Example
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Window 
functions

[Lyons]

● Rectangular window
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Window functions

● Sinusoid signal,  the effect of windowing (rectangular window, length N)
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Window functions

● Sinusoid signal,  the effect of windowing (rectangular window, length N)
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● The length of the sliding time window  w(t)  determines the resolution in time        
  and frequency such that a short window yields good time resolution but poor         
  frequency resolution, and the opposite when a long window is used
● Rectangular window  w(t)  causes less reliable measurements on spectral power
● Better estimates of power spectra are obtained by using weighted window            
  functions like Triangular, Hanning, and Hamming windows

Window functions

(Sornmo, Laguna)
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Window functions

● Coefficients of window functions

Triangular window        w [n ] = {
n

N /2
, n= 0,1,2, ... ,N /2

2−
n

N /2 , n= N /2+1,N /2+2, ... , N−1

Rectangular window       w [n] = 1 ,      n = 0,1,2, ... , N−1

Hanning (Hann) window       w [n ] = 0.5 − 0.5 cos(2 π n
N ) ,      n= 0,1,2, ... , N−1

Hamming window       w [n] = 0.54 − 0.46 cos(2 π n
N ) ,      n= 0,1,2, ... , N−1
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Window functions

[Lyons]

● Rectangular window,       Triangular window,     Hanning (Hann) window,    Hamming window      
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Window functions
● Linear-scale window amplitude spectra,  |W(k)|                                          
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(Lyons)

Window functions
● Logarithmic-scale window amplitude spectra,  |WdB[k]|  in dB      

Δ ML Rect = 2.
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N

Δ MLOther = 4.
F S

N

Width of the 
Main Lobe (ML)
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Window functions
● Sinusoid signal,  the effect of windowing

 - Left, amplitude spectrum using rectangular window, N = 25 samples

 - Right, amplitude spectrum using Hanning window, N = 25 samples

2. 2.π
N

Width of the main lobe in terms of  ω  is 4. 2.π
N

[Proakis, Manolakis]

Width of the main lobe in terms of  ω  is

N = 25N = 25



19
Course: 63514 Biomedical signal and image processing

● Example of spectrogram using Hamming windows (next slide)

 (a) The EEG at the onset of an epileptic seizure. The corresponding spectrogram   
        is computed using a Hamming window with a length of                                      
       (b) 1 s, (c) 2 s, and (d) 0.5 s.

 (c) The spectrogram is obtained with the longest time window (2 s) and therefore 
        exhibits the poorest time resolution of the three lengths; property is reflected  
        by a ridge which extends longer in time than does the ridge in figure (d)

 (c) The spectrogram shows the best frequency resolution is due to the longer        
        time window (2 s), while the frequency resolution in figure (d) is worse

● There is always a trade-off with respect to resolution in time and frequency

Example of spectrogram

(Sornmo, Laguna)
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Example of spectrograms using Hamming window
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Example of spectrogram
● Spectrogram of the speech signal (Fs = 16.000 smp/sec; Hamming window, w(n), of duration 6.8 
   sec, or, N = 108; time increment 16 samples, or 1ms) 

[Oppenheim, Schafer]
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● The coherence function (magnitude-squared coherence),  Cxy(ω),  allows us to      
  find common frequencies and to evaluate the similarity of signals
● Coherence (Latin – cohaerentia) means natural or logical connection or                  
  consistency
● The coherence function estimates the extent to which y(t) may be predicted         
  from  x(t)

 where  Pxx(ω)  and  Pyy(ω)  are power spectra of signals  x(t)  and  y(t),  Pxy(ω)      
  is cross-power spectrum for these signals, and  x^(ω)  and  y^(ω)  are the            
  Fourier transforms of  x(t)  and  y(t)
● The value of coherence will always satisfy    0  ≤  Cxy(ω)   ≤  1
● If   y[n]  =  h[n]  *  x[n],   then   Cxy(ω)  = 1

(Coherence function)
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(Example of coherence function)

(Golinska AK, Coherence function in biomedical signal processing)

x [n] = k1 [n ] + cos(2 π . 0.1n) + cos(2π . 0.3n)

y [n] = k 2[n] + cos(2π (0.1n+ψ)) + cos (2π (0.4 n+ϕ))

x [n] y [n]
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