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Abstract
This editorial reviews the background issues, the design, the key achievements, 
and the follow-up research generated as a result of the PhysioNet/Computing 
in Cardiology (CinC) Challenge 2014, published in the concurrent focus 
issue of Physiological Measurement. Our major focus was to accelerate the 
development and facilitate the comparison of robust methods for locating 
heart beats in long-term multi-channel recordings. A public (training) database 
consisting of 151 032 annotated beats was compiled from records that 
contained ECGs as well as pulsatile signals that directly reflect cardiac activity, 
and other signals that may have few or no observable markers of heart beats. 
A separate hidden test data set (consisting of 152 478 beats) is permanently 
stored at PhysioNet, and a public framework has been developed to provide 
researchers with the ability to continue to automatically score and compare the 
performance of their algorithms. A scoring criteria based on the averaging of 
gross sensitivity, gross positive predictivity, average sensitivity, and average 
positive predictivity is proposed. The top three scores (as of March 2015) on 
the hidden test data set were 93.64%, 91.50%, and 90.70%.

Keywords: ECG, blood pressure, multimodal, beat detection, PhysioNet 
Challenge, heart rate, data fusion 
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1.  Introduction

The ubiquitous presence of digital bedside monitors in the delivery of health care has pro-
vided an unprecedented opportunity to develop software that can robustly estimate a patient’s 
condition. Over the past years, several large databases have been developed with concurrent 
recordings of multiple physiological signals, including electrocardiogram (ECG), blood pres-
sure (BP), electroencephalogram (EEG), respiration (RESP), photoplethysmogram (PPG), 
and others (Welch et al 1991, Moody and Mark 1996, Terzano et al 2001, Saeed et al 2011). 
Because some of these signals carry information pertaining to the cardiovascular system  
(figures 1 and 2), the PhysioNet/Computing in Cardiology Challenge 2014 (the Challenge) 
sought to discover the optimal methods for reliably detecting heart beats by combining infor-
mation from simultaneously recorded physiological waveforms (Moody et al 2014).

The development of software for automatic detection of heart beats (or heart rate) using 
either single channels of ECGs or pulsatile waveforms has a long history of accomplish-
ments (see, for instance, Chang et al 2009, Chen et al 2009, Hamilton and Tompkins 
1986, Kohler et al 2002, Liu et al 2010, Li and Clifford 2012, Mendelson 1992, Moody 
and Mark 1982, Okada 1979, Pahlm and Sörnmo 1984, Pan and Tompkins 1985, Portet  
et al 2005, Starmer et al 1973, Zong et al 2003a, 2003b). In addition, there have also been 
studies proposing methods for heart beat or rate estimation from records containing multiple 
ECG leads and/or extra pulsatile channels (for a review, see Pahlm and Sörnmo 1984). Gritzali 
et al (1989) used the length transform as a way to project the squared amplitude of multiple 
ECG channels into a single axis for improved peak detection.

Yu et al (2006) used a cohort of trauma patients to develop a method for reliable heart rate 
estimation by combining ECG and PPG heart rate estimates on the basis of their waveform 
quality. However, the study was limited to only 158 randomly selected 7 s data samples of 
trauma patients collected during helicopter transport, and compared only heart rate. Although 
one could expect to learn the relationships between signal quality measures and physiological 
changes, an enormous database of scenarios would be needed (e.g. see Behar et al 2013a).

An alternative approach to these essentially static methods is to incorporate temporal 
dynamics into the learning method to leverage the vast lengths of data. Feldman et al (1997) 
used Kalman filtering frameworks to robustly calculate heart rate from the ECG and the PPG 
pulsatile waveforms collected from 85 records with maximum duration of four hours (12 from 
an operating room, 60 from an adult ICU and 13 from a pediatric ICU). Unfortunately, no 
generally optimal method for combining estimates was proposed. Subsequently, Tarassenko 
and Townsend (2005) extended the approach to weight the fusion step by the inverse of the 
Kalman filter’s covariance. However, this did not account for large changes due to artifacts 
occurring on multiple channels. Li et al (2008) solved this issue by including non-linearly 
weighted signal quality indices. The authors used a database of 6000 h of simultaneously 
acquired waveform from 437 ICU patients and developed a Kalman filter and signal quality-
based approach to fusing both temporal and signal quality information to accurately identify 
changes in heart rate, and in subsequent works, blood pressure and respiration rate (Li et al 
2008, Nemati et al 2010). Importantly, the authors included a significant number of pathologi-
cal events, although not an exhaustive selection.

Although most physiological signals carry information that helps us differentiate cardiac 
events or cycles from other physiology (such as rapid breathing) or noise (e.g. movement), 
there have been few other attempts to combine many of the observables into a single estima-
tor of heart rate or heart beat timing. Moreover, the inaccuracies are rarely reported and many 
publications simply use a convenient detector, chosen often for simplicity, as a pre-process-
ing step. The potential errors this introduces and its lack of reproducibility or consistency is 
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Figure 1.  Example waveforms used in the Challenge. The beat annotations are marked 
in green. The RR interval time series derived from beat annotations is displayed for 
comparison with the RESP signal. Note that the EMG signal contains observable 
cardiac artifact. See table 1 for definition of signal labels.

Figure 2.  Example waveforms used by the Challenge containing abnormal beats. The 
beat annotations are marked in green. The RR interval time series derived from beat 
annotations is displayed for comparison with the CVP signal. The abnormal beats are 
labelled: S (Supraventricular premature or ectopic beat), and V (premature ventricular 
contraction). In addition, the normal beat also have tracings of pacemaker activity. See 
table 1 for definition of signal labels.
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widely ignored. Furthermore, QRS detectors are often designed and tested on clean and rather 
limited databases, which are not representative of the application domain, such as the ICU, 
where noise and recording types can be very different to that of the databases. It should also be 
noted that detectors are rarely evaluated as a function of their final application (such as estima-
tion of ST elevation, QT interval, respiration rate, etc). Performing fair comparisons of multi-
channel algorithms developed in different data sets and without clearly defined metrics can be 
difficult because of the variability in the selection of these criteria. The 2014 Challenge, fol-
lows some of the themes of the 2013 Challenge (Silva et al 2013, Clifford et al 2014), explor-
ing issues related to accurate heart rate detection. In particular, the two major aims of the 2014 
Challenge and of this focus issue were to facilitate the development and comparison of robust 
methods for locating heart beats in long-term multi-channel recordings. A public database 
was compiled from records that contained ECGs, pulsatile signals that directly reflect cardiac 
activity and other signals that may have few or no observable markers of heart beats. A per-
manent hidden test data set is kept at PhysioNet and a public framework has been developed 
to provide researchers with the ability to automatically score and compare the performance 
of their algorithms. All algorithms that were successfully scored remain privately archived at 
PhysioNet. This allows us to efficiently re-calculate and publish performance statistics in case 
of changes or improvements in either the data sets or scoring criteria. Open source algorithms 
from the Challenge and from this focus issue are available from PhysioNet (http://physionet.
org/challenge/2014/sources/).

2.  Overview of the Challenge

2.1.  Data description

The Challenge data set used for this focus issue has been modified with respect to the original 
Challenge data set (Moody et al 2014) in order to account for feedback received at the end of 
the competition. More specifically, the training set was augmented with 100 records from the 
original hidden test set, in an attempt to generate a more realistic and difficult training group. 
Thus, the public training set consists of 200 records, while the hidden test set consists of 
210 records. The data sets contained signals with a maximum duration of 10 min, but several 
records were shorter than 10 min. The minimum, mean, and standard deviation of the record 
lengths, in seconds, for the hidden test set (training set) was: 13.9 (19.9), 521.7 (563.1), 160.6 
(118.2).

The cohort consisted of human adults, including both patients with a wide range of cardiac 
irregularities and healthy volunteers. A subset of patients had implanted cardiac pacemakers. 
Each record contained one ECG signal and at least three additional signals (table 1). Several 
records included multiple pulsatile signals. The waveforms were sampled at a rate between 
250 and 360 Hz; though in any given record all signals were sampled at the same fixed fre-
quency. The signal types included arterial blood pressure (ART), general blood pressure (BP), 
carbon dioxide (CO2), central venous pressure (CVP), ECG, electroencephalogram (EEG), 
electromyography (EMG), EOG, pulmonary arterial pressure (PAP), general pressure (pres-
sure), nasal or abdominal respiration (RESP), oxygen level (SO2), and stroke volume (SV).

A total of 303 510 beats were annotated (152 478 in the test set and 151 032 in the train-
ing set). All beats were manually verified by at least two humans, but errors in beat locations 
are likely to still exist (particularly on annotations derived from pulsatile signals and with no 
visible QRS in the ECG waveform to validate the fiducial point). The beats were annotated 
under a wide range of unusual conditions, including pacemaker activity, supraventricular tach-
ycardia, cardiac massage, electrocautery interference, premature ectopic beats, defribillation, 
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fusion of paced and normal beats, flutter, and ventricular fibrillation. Roughly 95% of the 
beats were normal beats. For the revised data sets, no specific beat labels were provided to 
competitors (all beats purposely labelled as Normal by default).

2.2.  Scoring criteria

Competitors submitted software that was run on the hidden test set in order to generate the 
competitor’s beat annotations (see the section below for more details on the scoring environ-
ment). The participant’s annotations on the hidden test data set were then compared to the 
reference annotations using the beat-by-beat algorithm defined by the ANSI/AAMI EC38 and 
EC57 standards, as implemented by the ‘bxb’ and ‘sumstats’ tools from the WFDB software 
package (Goldberger et al 2000). A tolerance window of 300 ms centered at the reference 
fiducial point was used in order to define a correctly detected beat. Each entry’s output was 
evaluated on four performance statistics:
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where TP, FP, and FN denote true positives (correctly detected beats), false positives (errone-
ously identified beats outside of the tolerance window or additional estimated beats within a 
tolerance window), and false negatives (undetected reference beats) respectively, and TPi, FPi, 
and FNi denote the statistics for an individual record. The overall score for each entry was the 

Table 1.  Number of signal waveforms per data set.

Signal name Acronym Test Training

Arterial blood pressure ART 135 61
General blood pressure BP 25 116
Carbon dioxide level CO2 79 39
Central venous pressure CVP 123 57
Electrocardiogram ECG 210 200
Electroencephalogram EEG 25 110
Electromyogram EMG 8 44
Electrooculogram EOG 8 44
Pulmonary arterial pressure PAP 122 6
General pressure Pressure 149 83
Respiration RESP 119 213
Oxygen level SO2 1 23
Stroke volume SV 1 23
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average of these four statistics, equations  (1)–(4). No distinction was made regarding beat 
types (normal and abnormal beats were treated equally).

2.3.  Scoring environment

An automated scoring framework was developed on PhysioNet (Goldberger et al 2000) in 
order to grade the entries on the hidden test data set (figure 3). Competitors submitted their 
entries in the form of a ‘zip’ or ‘tar’ archive that included everything needed to compile and 
run their software on a GNU/Linux system, together with the complete set of annotations that 
they expected their program to produce for the records in the training set. This format allowed 
us to validate and score entries completely automatically, notifying competitors as soon as 
their entries were scored. The median response time, from the moment the user submitted an 
entry to PhysioNet, to the moment their scores were reported back to PhysioNet, was 64 min 
(including the processing of 200 training records for code validation and processing 200 hid-
den test records for scoring).

The competitor’s algorithm was limited to ×6 1010 CPU instructions per record. In the 
original Challenge, entries were allowed to run for at most 40 s per record, but we found that 
the exact running time was impossible to control with any precision. Feedback statistics on the 
number of CPU instructions used by the entry were provided via PhysioNet’s web interface. 
If the program reached its CPU instruction limit, it was stopped at that point and scored based 
on the annotations it had already written.

Each time an entry was uploaded to the PhysioNet web server, it was first checked for 
proper formatting and then transferred to a virtual ‘sandbox’ system. A cloned copy of the 
sandbox was created for each entry. The scoring system would then unpack the archive and 
run the entry’s setup script (compiling any code if necessary). After the initial setup, the entry 
code was executed individually on each record of the training set. If the program could not be 

Figure 3.  Diagram describing the process for automatic evaluation of Challenge entries.
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compiled, or did not produce the same annotations that the submitter obtained when running 
the code on the training set on their own machines, the evaluation stopped, and an error mes-
sage were sent back to the submitter.

Once an entry was verified to be producing the same output as expected by the entrant on 
the training set, the scoring system then proceeded to compute the annotations on the hid-
den test set. The annotation files were collected, scored by ‘bxb’ and ‘sumstats’ as described 
above, and the final scores sent back to the submitter. Any errors which occurred during this 
portion of the evaluation were ignored, and we did not allow the program to report back any 
information about the test set apart from the final aggregate scores.

For this focus issue, a maximum of 20 submissions were allowed per author (not counting 
entries that were not scored). The submitter could choose to designate an entry as a ‘dry run’ 
by including a file named ‘DRYRUN’ in the archive; in this case, the entry would be tested on 
the training set, but not on the test set, and would not count against the user’s limit of 20 entries.

The test environment consisted of a virtual 64 bit CPU running Debian GNU/Linux 7. 
The virtual system provided a single CPU core, 2 GB of memory, and 1 GB of virtual disk 
space for the program to use. In addition to the standard Debian packages, the test envi-
ronment included a variety of open-source compilers, libraries, and utilities, including the 
WFDB software package (version 10.5.22), GNU Octave (version 3.6.2) (Eaton et al 2009), 
and OpenJDK (version 7u55). This system was hosted using KVM on a computational server 
with an 8-core, 2.6 GHz Opteron CPU and 32 GB of RAM; we allowed the server to run up 
to six virtual machines to evaluate up to three entries in parallel. Users were provided with 
the system information described above, and encouraged to develop their entries on their own 
replica of this open source environment.

3.  Review of key algorithms in the Challenge

In general, each algorithm consisted of several (or all) of the following seven stages, as we 
now describe.

3.1.  Signal phenotyping and selection

Before analysing a signal it is important to first verify that the signal contains the information 
you expect (i.e. an ECG signal is actually an ECG). Sometimes the signals are labelled incor-
rectly, or do not contain the information that one would expect from the label. An example of 
this is when the ECG channel has a very low amplitude and the baseline wander is strong and 
synchronous with respiration. More worrying, some archiving agents used in data collection 
(which are not designed for clinical use) report the wrong label for the signal. Finally, as an 
artefact related to the heart beat can manifest on atypical signals (such as the EEG), there is 
potential to automatically detect the presence of this artefact and incorporate the additional 
source of information only when appropriate (e.g. only utilise the EEG if it contains informa-
tion relating to the heart contraction). Vollmer (2014) selected the signal type by applying the 
methods they had developed for ABP and ECG simulatenously: they classified the signal as 
ABP if the resulting RR series was more regular than the RR series produced by the other 
method (and if not, then the signal was classified as an ECG). Note that while this is designed 
to classify a signal as ‘ECG’ or ‘ABP’, it also incorporated other signals so long as the RR 
interval was sufficiently regular. De Cooman et al (2014) assumed that the ECG signal was 
labelled correctly and subsequently ran a peak detection algorithm on the ECG. The authors 
then estimated the power spectral density (PSD) of the resultant RR time series and identified 
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a frequency band centred on the dominant peak (i.e. the heart rate). The remaining signals 
were similarly processed (peak detection followed by PSD estimation), and they were used 
only if there was a high correlation present in the selected frequency band.

3.2.  Signal quality assessment

A strongly related area to that of signal phenotyping and selection is that of signal qual-
ity. Several entrants used signal quality indices (SQIs) to identify trustworthy segments of 
data. In particular, Johnson et al (2014) and (2015) used a suite of SQIs developed in earlier 
works to do this, achieving the highest score in the Challenge and the second highest score 
in this focus issue. Pimentel et al (2014) used an estimate of signal quality as a ‘confidence’ 
measure in the input of a hidden semi-Markov model, down weighting the impact of peaks 
detected on the ECG or ABP if the signal quality was low. Vollmer (2014) used the difference 
between a smoothed windowed maximum and a smoothed windowed minimum: if this dif-
ference was too low then the signal was considered bad quality, equivalently considered as a 
check on the amplitude of pulses on the waveform. Johannesen et al (2014) used physiologic 
constraints to filter waveforms: there should be at least 10 beats per 60 s of recording. Some 
entrants, including De Cooman et al (2014) and Vollmer (2014), used the regularity of the 
resultant RR series as a surrogate for signal quality. In normal sinus rhythm, subsequent RR 
intervals tend to be of similar duration as previous RR intervals. Consequently, a high stan-
dard deviation in the first difference of the RR series indicates abrubtly changing RR interval 
durations, and this was frequently used to determine quality of the underlying signal. It is 
worth noting, however, that many arrhythmias also cause highly irregular RR series, which 
will be discussed further later.

3.3.  Preprocessing

Prior to the application of a peak detection algorithm, it was highly beneficial for competitors 
to perform some level of preprocessing. The aim of preprocessing was to increase the pres-
ence of the heart beat pulse while reducing the presence of noise, i.e. to improve the signal 
to noise ratio (SNR). It was very common for participants to low pass filter the data, as most 
cardiac information is contained below 40 Hz. Interestingly, Pimentel et al (2014) used a low 
pass filter with a 3 dB cut off of 16 Hz, which undoubtedly corrupted the morphology of the 
ECG waveform. However, as the only feature of interest is the location of the QRS peak, this 
corruption is irrelevant, and it has been previously shown for feotal ECG waveforms that 
quite liberal cut off frequencies provide better resolution of the peak locations (Behar et al 
2014). Looking beyond frequency domain filtering, Johnson et al (2014) used a Mexican hat 
filter which better resolved peaks than more commonly applied rectangular window filters. 
Vollmer (2014) drifted from this approach and used a nonlinear trimmed average, followed by 
a smoothed maximum/minimum step, to create a square like waveform which better resolved 
QRS complexes.

3.4.  Peak detection

Peak detection is a well studied field for both the ECG (Pahlm and Sörnmo 1984, Kohler  
et al 2002) and ABP (Li et al 2009, Li and Clifford 2012) signals. This is the core of any ECG 
processing algorithm, as correct determination of the location of heart beats is key for any 
subsequent analysis. Open source peak detectors have been available for the ECG for decades 
(Pan and Tompkins 1985), and similarly for the ABP (Zong et al 2003a). The typical approach 

EditorialPhysiol. Meas. 36 (2015) 1629



1637

(and that of Pan and Tompkins 1985) is the sequential application of a difference filter (to 
amplify steep waveforms i.e. the QR and RS slopes), a squaring operation (to amplify peaks 
and act as a full wave rectifier), and finally a windowed average (to reduce noise). This method 
was used for gqrs, which was the sample entry in the Challenge. Pimentel et al (2014) did not 
directly detect peaks, but rather treated the heart beat as one of two states in a Markov model 
and treated the states as peak detections. Hoog Antink et al (2014) treated peak detection as a 
blind deconvolution problem, aiming to extract the peaks (assumed to be a Dirac delta train) 
from the measured signals by estimating the transfer functions between the Dirac delta func-
tion and each corresponding signal. Amplitude thresholding is applied to the extracted source 
signal to determine the final peak locations. Gierałtowski et al (2014) used a slope detector 
and achieved good performance. For the ABP signal, and pulsatile waveforms in general, one 
of the more common approaches uses the slope sum function (Zong et al 2003a, Li et al 2009). 
This involves calculating a cumulative sum across a window of the first difference of a signal, 
and thresholding on this new signal to estimate peak locations. For pulses with high initial 
slopes (e.g. ABP, PPG) this technique has been reasonably effective, and was used by many 
entrants including Johnson et al (2014) and Pimentel et al (2014). De Cooman et al (2014) 
treated the maximum in consecutive 300ms windows as peaks, and this simple algorithm 
was surprisingly effective, though undoubtedly sensitive to noise. Finally, Pangerc and Jager 
(2014) used a similar approach to Pan and Tompkins (1985), with an addition of morphologi-
cal smoothing to improve robustness against noise.

3.5.  Delay correction

As the signals in the Challenge were acquired from a variety of locations in the body, it was 
important to correct for the delay of these signals. In terms of the ABP and PPG, this delay is 
often called the pulse transit time (PTT). As the ECG is treated as the true time of the heart beat 
for annotation purposes, most algorithms focused on shifting peaks detected on other signals 
backward in order to match the ECG. Vollmer (2014) shifted detections on the ABP signal by 
260 ms by default, or if possible by the median delay between peaks on the ECG and ABP 
signals (calculated over 20 s). Johnson et al (2014) shifted ABP peaks by 200 ms by default, or 
by the average delay between ECG and ABP detections over 60 s. Interestingly, Vollmer (2014) 
had a dynamic delay across the signal, updated every 20 s, while Johnson et al (2014) had a 
static shift for each 10 minute segment. Pimentel et al (2014) shifted the ABP signal by a fixed 
40 ms, but estimated peaks jointly from the ABP and the ECG signals making exact record-
wise alignment less of a necessity. Pangerc and Jager (2014) estimated the relationship between 
pulse rate and the PTT using a univariate regression, and utilized the PTT which best matched 
the current pulse rate for each beat. Gierałtowski et al (2014) used a default delay of 280 ms or 
averaged the delay for all ECG and ABP detections if they were available. Finally, Hoog Antink 
et al (2014) used a default delay of 200 ms or the maximum lag in a cross-correlation between 
the reference signal (usually the ECG) and the examined signal (usually the ABP).

3.6.  Fusion

Fusion refers to the combination of peaks across various signals, all of which correspond to 
the same QRS complex. Fusing data across channels is a surprisingly non-trivial task, particu-
larly when the source data come from different transducers (see Li et al 2008 and Nemati et al 
2010). Identifying when one should ignore a signal segment, or weight together parameters 
assessed on it with those from other channels can be problematic, and in essence has to be 
learned from a large data set, and optimised for a given application. In Johnson et al (2014) 
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and (2015), the authors found that rather than weighting segments by quality, a higher accu-
racy was found by simply switching between segments with higher signal quality. Johannesen 
et al (2014) used a voting scheme, where a time series of beat detections, convolved with a 
tapered cosine, were averaged and peaks from this average waveform determined the final 
beat location. De Cooman et al (2014) had a similar voting system using rectangular windows 

and required agreement of ⌊ ⌋ + 1D

2
 signals. Vollmer (2014) used an SQI to determine safe 

beats which were averaged to produce the final annotation set.

3.7.  Search back

A final post processing step is sometimes applied which involves reviewing the current peak 
detections and deciding if any are false positives or if there are potential false negatives. 
One common procedure in peak detection algorithms is the process of searching backwards 
through the data with different thresholds when a beat is not detected. This can significantly 
improve performance when the amplitudes or noise levels in the data change frequently. A 
simple approach is to decrement or increment any threshold by a given percent every few 
seconds as in Clifford (2002). De Cooman et al (2014) used the ratio of subsequent RR inter-
vals to determine if a beat had been missed, and guessed the location of missed beats using 
the last observed RR interval. Vollmer (2014) also used sudden increases or decreases in the 
RR interval to determine whether a beat had been missed. The popular open source algorithm 
epltd (Hamilton 2002) has a detailed search back procedure to ensure no beats are missed.

4.  Review of articles in the focus issue

The top scores for entries graded on the revised hidden test data set is displayed in figure 4 and 
table 2. The C sample entry consisted of a single lead QRS detector only (‘gqrs’ function from 
the WFDB toolbox). The M-code sample entry consisted of a QRS detector and a BP detector 
from the WFDB toolbox for MATLAB/Octave (Silva and Moody 2014). As of March 2015, 
12 teams submitted a total of 83 entries that were scored in the new environment.

Pangerc and Jager (2015) obtained the highest score reported in this focus issue, table 3 
(improving on their sixth place from the Challenge). They used the MIT-BIH Arrhythmia 
database, the long-term ST database, the MIT-BIH polysomnographic database and the MGH 
database (Goldberger et al 2000) together with the Challenge training set in order to train 
their algorithm. They made use of the ECG and BP signals and performed peak detection 
using their custom ECG and BP pulse detectors, signal quality estimation to exclude bad ECG 
segments and pulse transit time estimation in order to map the ECG pulses to the correspond-
ing BP pulses. Their QRS detector (repdet) provided a much improved performance over 
gqrs when evaluated on the Challenge training set. This is most likely due to the inclusion 
of a step in the detector to identify ECG records with paced beats (and the associated QRS 
detection correction)—there were 12 such records in the training set according to the authors. 
Successfully identifying these records significantly improved the authors performance over 
their official Challenge entry (Pangerc and Jager 2014).

Johnson et al (2015) achieved the highest score in the Challenge and second highest in 
this focus issue. Their algorithm made use of previously published signal quality indices for 
ECG and ABP in order to decide whether the physiological information extracted from these 
biosignals were reliable. The authors attempted to add biosignals other than ECG and ABP 
to their algorithm, but due to the limited number of operations allowed by the Sandbox (see 
figure 3) they were not able to test if it added any value on the test set.
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Hoog Antink et al (2015) suggested a technique that fuses the peaks detected on the ECG 
and ABP signals, based on the estimate of the RR intervals. These estimations were per-
formed using a multimodal similarity approach. Three similarity measures were extracted 
from each of the available ECG and ABP signals, and the final RR estimate was extracted 
using a Bayesian approach.

De Cooman et al (2015) proposed two approaches, where one did not use the signal label. 
It is indeed possible that some recordings in existing databases have mislabelled signals, and 
creating an automatic ‘signal type labeling’ technique might be useful. Their automatic signal 
labelling approach, unfortunately, performed worse than the approach which used the signal 
labels provided. The authors argue that this is likely due to the high accuracy of the signal 
labels in the datasets. They also suggested a majority voting approach for fusing the peaks 

Figure 4.  Top scores obtained on the revised data set for the 2014 Challenge. Both the 
C and M code sample entries are highlighted for comparison. A total of 83 entries from 
12 teams were scored through the Sandbox environment on the revised data set as of 
March 2014 table 2.

Table 2.  Results for entries submitted during Phase III of the challenge on a 300 record 
test set.

Challenge entry Phase III score (%)

Johnson et al (2014) 87.93
Antink et al (2014) 87.07
De Cooman et al (2014) 86.61
Gieraltowski et al (2014) 86.40
Vollmer (2014) 86.22
Pangerc and Jager (2014) 85.13
C-code sample entry 84.49
Johannesen et al (2014) 84.42
Pimentel et al (2014) 83.47
M-code sample entry 79.28

Note: the sample entries were created by the Challenge organisers and are described in Moody 
et al (2014).
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from multiple signals, which incorporated the fact that peak localisations on ECG signals are 
more precise than pulsatile ones. Finally, they also introduced a search back procedure, in case 
irregular rhythms were detected.

Galeotti et al (2015) proposed an algorithm which fused the beats detected on all the avail-
able pulsatile signals. However they noted that their Challenge score was not changed over an 
approach which used the ECG and BP signals only, thus showing that the inclusion of the addi-
tional pulsatile signals did not improve the estimation of heart beats on the Challenge test set. 
The authors also used the MIT-BIH Polysomnographic database for training their algorithm.

Pimentel et al (2015) proposed an interesting approach that differs dramatically from the 
other entries. Whereas other entries detected the peaks on the different signals and fused the 
localisations of the peaks based on different heuristics, Pimentel et al (2015) preprocessed 
the ECG and ABP signals, and used a machine-learning approach with these pre-processed 
signals as inputs, to output the final peak locations. They proposed the use of a semi-hidden 
Markov model, which offers the advantage of incorporating a prior knowledge of the dura-
tions in each state (part of the cardiac cycle) of the model.

Mollakazemi et al (2015) fused the peaks detected from the ECG and ABP signals. Fusion 
was performed based on two criteria: (1) number of candidate detection in a defined time 
window and (2) the regularity of the derived RR time series. The authors did not use any other 
pulsatile signals than the ECG and ABP.

Gierałtowski et al (2015) have proposed an approach where they fuse the peaks detected 
on multiple signals: ECG, ABP, but also EOG, EMG and EEG. They suggested the use of an 
in-house QRS detector based on the RS slope, but also used gqrs. Their overall approach was 
as described in the previous subsection.

5.  Summary and future directions

A total of 340 Challenge entries were scored the main challenge and 104 for this focus issue, 
totalling 444 entries from 47 teams. Due to the limited amount of time available on our serv-
ers, and to reflect the relatively constrained processing power in wearables and bedside moni-
tors, we chose an upper limit of running at almost 500 times real time (on our servers). This 

Table 3.  Results for entries submitted for this focus issue on the revised hidden test set 
(201 records).

Focus issue entry Score (%)

Pangerc and Jager (2015) 93.64
Johnson et al (2015) 91.50
Antink et al (2015) 90.70
DeCooman et al (2015) 90.02
Galeotti et al (2015) 89.73
*Vollmer M 89.55
Pimentel et al (2015) 89.13
Mollakazemi et al (2015) 88.85
*Krug J 88.34
Gieraltowski et al (2015) 88.07
C-code sample entry 87.38
M-code sample entry 85.04

Note: participants marked with an asterisks (*) do not have a manuscript in this issue but source 
code is available on PhysioNet. The sample entries were created by the Challenge organisers and 
are described in Moody et al (2014). 
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enforced a trade off between time taken and complexity of the algorithm. Challenge entries 
favoured simpler, faster algorithms (to fit within the challenge time constraints) versus more 
complicated potentially more accurate algorithms. Part of this issue is the use of interpretive 
languages (e.g. MATLAB) over low level languages (e.g. C). Some algorithms, which are too 
slow in MATLAB, may be perfectly reasonable in C.

One key issue to note is the quality and variety of the underlying data used in the Challenge. 
In particular, the Challenge data set is not perfectly labelled. A few records in the training set 
contained incorrect beat annotations. These records were identified by agreement of three 
independent annotators as being 1033, 1354, 42 511, 2277 with another possible three records: 
1195, 1242, 1858 although these were more contentious because the beats were paced and it 
was difficult to decide whether or not the reference annotations were accurate. An example 
of erroneous reference annotations for record 2277, which had bigeminy, was due to the fact 
that the ‘normal’ beats were not annotated (only the ectopic beats). It is advisable that future 
work on the Challenge database does not include these records in the training set until this 
issue is fixed.

Moreover, any heart beat detection algorithm should be assessed in the context of the appli-
cation for which it is intended. These can range from simple heart rate estimation (to identify 
bradycardia or tachycardia), to subtle estimators of ECG morphology changes (such as heart 
rate variability studies or late potentials). It is therefore important to consider the composition 
of the data and the exact metric used to assess accuracy.

The framework presented in the present Challenge could be improved by using an F1 
statistic such as in Behar et al (2014) in order to score the performance of the algorithms. 
Indeed, the F1 measure is an harmonic mean and it is suited to situation when the aver-
age of rates (here Se and PPV) is desired (Sasaki 2007). In addition, given that the length 
of some records were shorter than 10 min (with a few as short as a few seconds) it is not 
advisable to compute gross statistics (for obvious reasons). The statistics should ideally 
be reported by beat types or condition types if medical annotations are available. This 
is because the behaviour of some algorithms will likely be different from one rhythm to 
another (see, for example, Behar et al (2013a) where the SQI performance was rhythm 
dependent). Approximately 95% of the data used in this Challenge were identified to be 
normal (either by expert labels or algorithms). Although this is probably representative of 
any clinical recording scenario, evaluating on this data without weighting can lead to sta-
tistics which are strongly biased towards normal data. Since it is most important to identify 
beats during abnormality, it could be argued that the data set should be enriched with more 
pathological scenarios.

Most algorithms required some thresholds or parameters to be set using the training set 
data. This is usually performed by trying a couple of sensible values and evaluating how 
the algorithm performance changes on the training set data, or fixing most parameters and 
performing an exhaustive search of one or two parameters over a limit range. A better way to 
identify ‘optimal’ values for these parameters and their relative importance is using random 
search as in Behar et al (2013b) (code and example available on Physionet6).

The purpose of the Challenge was to design algorithms that could locate heart beats in 
long-term multi-channel recordings. This is particularly interesting in contexts such as: 
(1) ICU where multiple biosignals are systematically recorded and where the number of false 
alarm could dramatically be reduced; (2) ambulation—with the increased number of wearable 
technology where multiple ECG channels can be recorded along other pulsatile signals such 
as the PPG. The publications in this focus issue have shown an improvement in the range of 

6 www.physionet.org/physiotools/random-search/.
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3–4% above the Challenge scores when using multi-channel recordings versus only one chan-
nel. This very much highlights the important impact that multi-channel approaches can have 
in providing a better estimate of the heart rate and the potential application domains such as in 
false alarm reduction, which is the subject of the 2015 Challenge (Clifford et al 2015).

Finally, we note that, despite the limitations of the algorithms and the competition dis-
cussed above, the data set created for this Challenge can form the basis of a general testing 
set. We hope that, as the data set continues to be used in studies, more annotations are contrib-
uted by the community to the data set to enable the community to continue to address these 
limitations.
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