NON-LINEAR SIGNAL PROCESSING TECHNIQUES AND PREDICTING PRE-TERM DELIVERY

- Selected non-linear signal processing techniques
- Peak frequency of the signal power spectrum
- Peak amplitude of the normalized power spectrum
- Median frequency of the signal power spectrum
- Evaluation of signal processing techniques
- Evaluation of median frequency of power spectrum
- Sample entropy
- Evaluation of sample entropy
- Evaluation of signal processing techniques
- Current performances
- Discussion
- (Autocorrelation zero-crossing)
- (Maximal Lyapunov exponent and correlation dimension)

Selected non-linear signal processing techniques

- Peak frequency of the signal power spectrum
- Peak amplitude of the normalized power spectrum
- Median frequency of the signal power spectrum
- Sample entropy (is a measure of regularity of finite length time series and estimates the extent to which the data did not arise from a random process)
- (Autocorrelation zero-crossing (estimates periodicity of time series))
- (Maximal Lyapunov exponent (estimates the amount of chaos in a system))
- (Correlation dimension (estimates the complexity of time series))

Peak frequency of the signal power spectrum

- The power spectrum reveals periodic components of a signal and it should always be employed in time series analysis whether the primary analysis is statistical or dynamical
- Peak frequency is a suitable estimate of the signal power spectrum
- The power spectrum, *P*[*i*], is calculated using the fast discrete Fourier transform, then the peak frequency, *f*max, of the power spectrum, *P*[*i*], is calculated as follows:

$$f_{\max} = \frac{F_s}{N} \arg(\max_{i=i_{\text{low}}}^{i=i_{\text{high}}} P[i])$$

where Fs and N denote the sampling frequency and the number of samples

Peak amplitude of the normalized power spectrum

- Peak amplitude of the normalized power spectrum is a suitable estimate of the signal power spectrum
- The power spectrum is calculated using the fast discrete Fourier transform, then the peak amplitude, p_{max} , of the *normalized* power spectrum, P[i], is calculated as follows:

$$p_{\max} = \max_{i=i_{\text{low}}}^{i=i_{\text{high}}} P[i]$$

Median frequency of the signal power spectrum

- Median frequency is a suitable estimate of the characteristic of the signal power spectrum
- The power spectrum, *P*[*i*], is calculated using the fast discrete Fourier transform
- The median frequency, *f*med, is defined as the frequency where the sums of the parts above and below in the frequency power spectrum, *P*[*i*], are approximately the same:

$$f_{\text{med}} = i_m \frac{F_s}{N}, \quad \sum_{i=i_{\text{low}}}^{i=i_m} P[i] \approx \sum_{i=i_{m+1}}^{i=i_{\text{high}}} P[i]$$

where Fs and N denote the sampling frequency and the number of samples

Evaluation of signal processing techniques

- M measurements
 - T term
 - P pre-term
 - E measured early
 - L measured late
- *p*₁, ..., *p*₆ probabilities according to the Student's *t*-test when applied between the sets of measurements
- The Student's t-test produces the significance (probability), p, that two normally distributed sets belong to the same population

Course: 63514

Evaluation of median frequency of power spectrum

- Circles measures obtained for *term* delivery records
- Filled circles measures obtained for *pre-term* delivery records
- The dotted horizontal lines are the average median values for *term* delivery records (0.64 and 0.56 Hz)
- The full horizontal lines are the average median values for *pre-term* delivery records (0.5 and 0.49 Hz)

Evaluation of median frequency of power spectrum

- Evaluation of median frequency of power spectrum to separate groups of records according to time of delivery (*term*, *pre-term*) and time of recording when the
 0.3-3 Hz band-pass preprocessing filter was used
- *Sig:* Signal number
- *p*₁, ..., *p*₆: probabilities according to Student's *t*-tests
- Those probabilities <= 0.05 are bold
- The most important are p_1 and p_6

Technique	P	reproces	ocessing filter 0.3-3 Hz					
	Si	g p ₁	p_2	p_3	p_4	p_5	p_6	
Median	1	0.371	0.059	0.012	0.002	≤0.001	0.055	
Frequency	2	0.696	0.568	0.480	0.217	0.163	0.496	
$f_{\rm med}$	3	0.030	0.212	0.661	0.007	0.005	0.012	

Evaluation of median frequency of power spectrum

• Exercises 2: Estimating time course of peak frequency and median frequency in the selected frequency bands along the spectrograms of uterine EMG records

Course: 63514

9

Sample entropy

- The sample entropy is a measure of regularity of finite length time series and estimates the extent to which the data did not arise from a random process
- Less predictable time series exhibit a higher sample entropy!
- Given a time series u[n] of length N, and patterns aj[0, ..., m 1] of length m, m < N, where the patterns aj are taken from the time series u[n], aj[i] = u[i + j], i = 0, ..., m-1, j = 0, ..., N m; the part of the time series u[n] at time n = ns, u[ns, ..., ns + m-1] is considered as a match for a given pattern aj if abs (u[ns + i] aj[i]) <= r for each 0 <= i < m. The number of pattern matches (within a margin of r), cm, is constructed for each m.
- The sample entropy, *sampEn*, is then defined as:

$$SampEn_{m,r}(u) = \begin{cases} -\log(c_m/c_{(m-1)}), & c_m \neq 0 \land c_{m-1} \neq 0 \\ -\log((N-m)/(N-m-1)), & c_m = 0 \lor c_{m-1} = 0 \end{cases}$$

• Suitable parameters: m = 2, 3, 4; 2r = 10 - 20% of sample deviation, i.e., from 0.1 to 0.2.

- A simulated time series u[1], ..., u[48]; m = 3; 2r = 40 (10 20% of sample deviation)
- Compose the first 2- and 3-component template matching sequences (u[1], u[2]) and (u[1], u[2], u[3])
- The number of sequences matching the 2-component template = 2
- The number of sequences matching the 3-component template = 1
- Repeat for the next 2- and 3-component template sequences (*u*[2], *u*[3]) and (*u*[2], *u*[3], *u*[4]) and add the number of matches to the previous values
- Repeat for all other possible template sequences (u[3], u[4], u[5]), ..., (u[48-2], u[48-1], u[48])
- The SampEn is the natural logarithm of the ratio between the total number of 3- and 2-component template matches

Evaluation of sample entropy

- Circles measures obtained for *term* delivery records
- Filled circles measures obtained for *pre-term* delivery records
- The dotted horizontal lines are the average sample entropy values for term records (0.81 and 0.76)
- The full horizontal lines are the average sample entropy values for pre-term records (0.75 and 0.71)

Evaluation of sample entropy

- Evaluation of sample entropy to separate groups of records according to time of delivery (*term*, *pre-term*) and time of recording when the 0.3-3 Hz band-pass preprocessing filter was used
- Sig: Signal number
- *p*₁, ..., *p*₆: probabilities according to Student's *t*-tests
- Those probabilities <= 0.05 are bold
- The most important are *p*₁ and *p*₆

Evaluation of sample entropy

• Exercises 2: Separating uterine EMG records using sample entropy

Evaluation of signal processing techniques

- Evaluation of the techniques to separate groups of records according to time of delivery (*term*, *pre-term*) and time of recording when the 0.3–3 Hz band-pass preprocessing filter was used
- Sig: Signal number
- *p*1, ..., *p*6: probabilities according to Student's *t*-tests
- Those probabilities <= 0.05 are bold

Technique	Preprocessing filter 0.3–3 Hz								
	Sig	p_1	p_2	p_3	p_4	p_5	p_6		
Root mean	1	0.586	0.349	0.247	0.838	0.529	0.769		
Square	2	0.361	0.141	0.016	0.210	0.044	0.615		
RMS	3	0.636	0.612	0.445	0.069	0.045	0.450		
Peak	1	0.630	0.100	0.051	0.020	0.005	0.146		
Frequency	2	0.252	0.201	0.371	0.093	0.256	0.705		
f_{\max}	3	0.138	0.176	0.416	0.012	0.007	0.044		
Median	1	0.371	0.059	0.012	0.002	\leq 0.001	0.055		
Frequency	2	0.696	0.568	0.480	0.217	0.163	0.496		
$f_{\rm med}$	3	0.030	0.212	0.661	0.007	0.005	0.012		
Autocorrelation	1	0.085	0.897	0.526	0.033	0.053	0.146		
Zero crossing	2	0.089	0.340	0.223	0.658	0.499	0.059		
$ au_{R_{xx}}$	3	0.327	0.614	0.650	0.045	0.069	0.624		
Maximal	1	0.543	0.518	0.339	0.991	0.726	1.000		
Lyapunov exponent	2	0.533	0.175	0.056	0.421	0.156	0.591		
λ_{\max}	3	0.670	0.743	0.540	0.068	0.051	0.554		
Correlation	1	0.150	0.961	0.131	0.413	0.209	0.334		
Dimension	2	0.676	0.377	0.069	\leq 0.001	\leq 0.001	0.568		
$D_{\rm corr}$	3	0.790	0.976	0.446	0.113	0.079	0.882		
Sample entropy	1	0.326	0.172	0.272	0.001	0.001	0.084		
sampEn	2	0.882	0.184	0.017	\leq 0.001	\leq 0.001	0.323		
m = 3, r = 1.5	3	0.035	0.165	0.334	≤ 0.001	≤ 0.001	0.011		

Current performances

- Current performances in separating term and pre-term delivery EHG records of the TPEHG DB (using no additional clinical information)
- RMS, peak frequency, median frequency, sample entropy CA = 89% (CT) (Fergus at al, 2013)
 RMS, peak frequency, median frequency, sample entropy CA = 90% (NN) (Hussain et al, 2015)
 Sample entropy CA = 94.9% (SVM) (Ahmed et al, 2017)
 Wavelets CA = 96.25% (SVM) (Acharya et al. 2017)
 Normalized peak amplitude, median frequency, sample entropy CA = 96.33% (QDA)
 - CA = 100% for early records (23rd week of pregnancy) (LBCSI, 2018)

CA = (TP + TN) / (TP + FN + TN + FP)

• Realistic performances, CA about 65%

Course: 63514

Discussion

- The median frequency shows a slight drop as the time of gestation progresses for *term* records, i.e., a slight decrease of the power spectra distribution (i.e., shift to lower frequencies)
- The sample entropy values are lower for both *early* and *later pre-term* delivery records and indicate that the signals of *pre-term* delivery records exhibit higher predictability than the signals of *term* delivery records (Less predictable time series exhibit a higher sample entropy)
- Peak frequency, peak amplitude, and median frequency of power spectrum, and sample entropy are promising techniques

(Evaluation of signal processing techniques)

- Student's *t*-test (the conventional statistic for measuring the significance (probability), *p*, of a difference of means):
 - 1) Estimate the standard deviation of the difference of the means:

$$s_D = \sqrt{\frac{\Sigma_{one} (x_i - \overline{x_{one}})^2 + \Sigma_{two} (x_i - \overline{x_{two}})^2}{N_1 + N_2 - 2}} \left(\frac{1}{N_1} + \frac{1}{N_2}\right)$$

2) Compute t by

$$t = \frac{\overline{x_{one}} - \overline{x_{two}}}{s_D}$$

- 3) Evaluate the significance p of this value of t for Student's distribution A(t | v) with $v = N_1 + N_2 2$ degrees of freedom, by: p = 1 A(t | v)
- (Student's distribution estimates the probability that two normally distributed sets belong to the same population)
- A small numerical value of the significance (p = 0.05 or 0.01) means that the observed difference is "very significant"

(Autocorrelation zero-crossing)

- The autocorrelation provides a tool for discriminating between periodic and stochastic behavior of time series
- The autocorrelation zero-crossing is defined as the first zero-crossing starting at the peak in the autocorrelation, $R_{XX}(\tau)$, of the signal x[i]:

$$R_{xx}(\tau_{R_{xx}}) = 0; \quad R_{xx}(\tau) = \sum_{i=0}^{N-1} x[i] x[\tau+i]$$

(For further reading see: Akay, 2000, Vol. I and II)

(Maximal Lyapunov exponent and correlation dimension)

- The maximal Lyapunov exponent and the correlation dimension are both properties of non-linear systems
- Their calculation is based on a phase space, a construct which demonstrates the changes of the dynamical variables of the system
- The maximal Lyapunov exponent has ability to estimate the amount of chaos in the system
- The correlation dimension has ability to estimate the complexity of time series
- The phase space is a construct which demonstrates or visualizes the changes of the dynamical variables of the system
- Given a time series x(t) of length N, a Q-dimensional phase space is constructed from vectors y(t):

$$y(t) = \{y_d; d = 0, 1, \dots, Q - 1\},\$$

$$y_d = (x(t+d), x(t+d+D_{smp}), \dots, x(t+d+(N/Q)D_{smp}))$$

where *D*smp is the sample delay and *Q* is the embedding dimension (For further reading see: Akay, 2000, Vol. I and II)

Course: 63514

(Maximal Lyapunov exponent and correlation dimension)

- The maximal Lyapunov exponent estimates the amount of chaos in a system and represents the maximal "velocity" with which different, almost identical states of the system, diverge
- The (maximum) Lyapunov exponent, λ , is a measure of how fast a trajectory converges from a given point into some other trajectory

$$\lambda = \lim_{t \to \infty} \lim_{\|\Delta \mathbf{y}_0\| \to 0} \frac{1}{t} \log \frac{||\Delta \mathbf{y}_t||}{||\Delta \mathbf{y}_0||}$$

where $||\Delta y_0||$ represents the Euclidean distance between two states of the system at some arbitrary time to and $||\Delta y_t||$ represents the Euclidean distance between the two states of the system at some later time t

• (For further reading see: Akay, 2000, Vol. I and II)

(Maximal Lyapunov exponent and correlation dimension)

• It is proportional to the probability of the distance between two points on a trajectory being less than some *r*:

$$D_{\rm corr} = \lim_{r \to 0} \frac{\log(C(r))}{\log(r)},$$

where

$$C(r) = \lim_{M \to \infty} \frac{1}{M^2} \sum_{i=1}^{M} \sum_{j=i+1}^{M} \Theta(r - |\mathbf{y}(i) - \mathbf{y}(j)|),$$

and

$$\Theta(r - |\mathbf{y}(i) - \mathbf{y}(j)|) = \begin{cases} 1 : (r - |\mathbf{y}(i) - \mathbf{y}(j)|) \ge 0\\ 0 : (r - |\mathbf{y}(i) - \mathbf{y}(j)|) < 0 \end{cases}$$

(For further reading see: Akay, 2000, Vol. I and II)

Course: 63514