Previously at ACVM...

Fully-trainable trackers (implemented via CNNs)

- Classifiers (MDNet)
- Fully convolutional (SiamFc)
- Region proposal net (SiamRpn)
- Deep DCF (ATOM)
- Single-Shot segmentation-based (D3S)
- Transformer-based trackers (STARK)

Univerza v Ljubljani

Advanced CV methods Long-Term tracking

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani

Long-term tracking (LTT)

- Regardless of how well the visual model is designed, any short-term tracker will eventually fail
- Disappears from the field of view, gets fully occluded, etc.

Long-term tracking (LTT)

- The general LT tracking properties:
 - Determine when the target has been lost (or disappeared)
 - **Re-detect** the target after losing the target
 - Update the visual model very carefully to minimize drifting

Taxonomy: Short-term/long-term spectrum^[1]

		Position reported	Tra	acking failure detectio	on Targe	t re-detection
ST _o : Basic ST	\bigcirc	each frame	\bigcirc	no	(🦻 no
ST ₁ : Basic ST with conservative updating	\bigcirc	each frame	() n u	ot explicitly, selective pdate of visual mode	e (🕟 no
LT ₀ : Pseudo LT	:	only when visible	:	yes	(🕟 no
LT ₁ : Re-detecting LT	:	only when visible	<u>.</u>	yes		🥑 yes

- ST₀ (e.g., vanilla DCF, MS); ST₁ (e.g., MDNet) -> easily converted to LT₀
- LT₁ most sophisticated, typical composition:
 - Short-term tracker (ST) for frame-to-frame localization
 - Detector for target re-detection
 - Algorithm for interaction between ST and detector

LT1 trackers origin

- Most of the LT₁ originate from two main paradigms introduced by *TLD*¹ (aka Predator) and *Alien*²
- In the following we will overview both

¹Kalal, Mikolajczyk, Matas, Tracking-Learning-Detection, TPAMI2010

²Pernici, F. and Del Bimbo, A., Object Tracking by Oversampling Local Features, TPAMI2013

Advanced computer vision methods

TRACKING BY TRACKING, LEARNING, DETECTION (PREDATOR)

Tracking learning detection: TLD aka Predator¹

- Detector is the main component lacksquare
- It's all about robust detector updating
- Run Detector and ST tracker in parallel
- Use the ST and Detector output to construct training samples for Detector

¹Kalal, Mikolajczyk, Matas, Tracking-Learning-Detection, TPAMI2010

flock

Fast-forward... "TLD in action"

Kalal, Mikolajczyk, Matas, Tracking-Learning-Detection, TPAMI2010

The short-term tracker

- A "cell" grid of ~100 Lucas-Kanade trackers
- Each LK tracker has a reliability estimate
- Robustly estimates motion from 50% of most reliable displacements (could also use a robust estimator, e.g., RANSAC)
- 2 layers of Pyramidal LK tracker with 10×10 pixels patches.
- Fairly robust frame-to-frame localization in absence of severe occlusion

Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-Backward Error: Automatic Detection of Tracking Failures. ICPR, 2010 Improved version:

T. Vojir and J. Matas. Robustifying the flock of trackers. CVWW2011

The detector visual model

- Appearance model: a grayscale patch
- Bounding box with fixed aspect (only scale changes, proportions constant)
- Patch resampled into 15x15 size
- Object model is a collection of multiple positive and negative patches!
- Forget patches (randomly) to keep the number of patches low enough (memory and speed efficiency)

Model:

The detector application

- A scanning window
- Compare patches using a normalized cross correlation (NCC)
- A nearest-neighbor classifier using the NCC score
- Problem: A brute force would require comparing all locations with all patches in the model!
- Solution: Apply cascaded approach that quickly rejects many potential image locations by using simple and fast features. Fast classifiers with low FP, high TP

The detector cascade stage 1 and 2

- Cascade stage 1: variance of patch
 - Ignore regions with at least 50% smaller intensity variance than a patch selected for tracking
- Cascade stage 2: ensemble of weak classifiers
 - Base classifiers based on binary pixel comparisons

- Implemented as random ferns (e.g., [Lepetit 2005])
- Real-time training/detection 20 fps on 320x240 image

The ST-Detector interaction algorithm

• PN learning: Responsible for training the Detector

- PN (semi-supervised) learning assumptions:
 - Two classes of labelling processes are available: P and N
 - "P" proposes positive, the "N" proposes negative examples only.
 - Both processes are noisy and can make mistakes
 - By carefully addressing the conflicts between the two labelling processes, a long-term stability is achieved.

Interaction algorithm P-event: "Loop"

- Guideline: Do not trust the learning examples until you are absolutely sure about their labels!
- Exploits temporal structure
- Assumption: If an adaptive tracker fails, it is unlikely to recover.
- Rule: Patches from a track starting and ending in the current model (red), i.e. are validated by the detector, are added to the model.

Interaction algorithm N-event: "Uniqueness"

- Exploits spatial structure
- Assumption:

Object is unique in a single frame (no other object looks alike)

- Rule: If the tracked patch is in the model, all other detections within the current frame (red) are assumed wrong
 - ightarrow are pruned from the model

Interaction algorithm: Model learning

Defined by:

- P-events, N-events, detector learning method
- P and N events are defined in terms of tracker and detector outputs

TLD tracking-learning example

0.5

0

TLD tracking example

TLD summary

- PN Learning trains a robust detector by observing the object of interest (no a priori labelled training data, no constraints on the video)
- Detector improves over time (experimentally validated)
- A stable semi-supervised learning algorithm
- Matlab/C++ implementation runs at > 20 fps (back in 2010)

• Code is available online:

http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/

Kalal, Mikolajczyk, Matas, Tracking-Learning-Detection, TPAMI2010

Advanced topics in Computer Vision

TRACKING BY OVERSAMPLING LOCAL FEATURES (ALIEN)

ALIEN tracker

• Appearance Learning In Evidential Nuisance

Consider appearance variations in an object region susceptible to self-occlusions and shadows:

- Idea: require a multi-view local appearance of the object.
- Multiple instances of local appearance should be combined with a global shape model.

Pernici, F. and Del Bimbo, A., Object Tracking by Oversampling Local Features, TPAMI2013

ALIEN tracker

- Represent local appearance by key-points (SIFT features).
- Since SIFT cannot generalize well local appearance changes by a single local descriptor, the solution is to just remember *all* the various appearances

- Detect keypoints on the target
- Align the target regions
- Store all keypoints along with their relative position to the target template

Alien tracker overview

- A pair of non-parametric classifiers: object + context
- Object state (position, scale, angle): $\mathbf{x}_t = [x_t, y_t, s_t, \theta_t]^T$

 \mathcal{S}_{0}

 \mathcal{C}_0

- Implicit motion model (uniform) $p(\hat{x}_t | \hat{x}_{t-1}) = \begin{cases} 1, & \|\hat{x}_t \hat{x}_{t-1}\|_{\infty} \le r \\ 0, & \text{otherwise} \end{cases}$
- Object classifier: $T_t = \{(\mathbf{p}_i, \mathbf{d}_i)\}_{i=1}^{N_T}$
- Context classifier: $C_t = \{\mathbf{d}_i\}_{i=1}^{N_c}$
- The detector returns $p(y=1|S_t)$ where S_t are the features from the search area: $S_t = \{(\mathbf{p}_i, \mathbf{d}_i)\}_{i=1}^{N_s}$

⁽without position)

Alien tracker details

- Appearance learning is achieved by addressing the following:
 - Focus on distinctive features: Descriptors alone are ambiguous because they can be interpreted as a valid description for *both*, the object and the surrounding context.
 - Nonstationary appearance: Appearance must be updated according to the novel information provided by the detected object in the current image.
 - Occlusion: Occlusion must be detected in order to avoid updating the wrong appearance contaminating the object template.

Feature distinctiveness

 Perform feature selection: Features that match to the template as well as the accumulated context C_t are ignored.

Alien tracker details

- Appearance learning is achieved by addressing the following:
 - Focus on distinctive features: Descriptors alone are ambiguous because they can be interpreted as a valid description for *both*, the object and the surrounding context.
 - Nonstationary appearance: Appearance must be updated according to the novel information provided by the detected object in the current image.
 - Occlusion: Occlusion must be detected in order to avoid updating the wrong appearance contaminating the object template.

Object detection

 Match non-ignored template features F_t to non-ignored features within search region S_t.

- Apply robust matching by MLESAC*
- Object is declared detected if the scale and angle do not change significantly between consecutive frames

(ignore valid but unreasonable matches, e.g., reflections)

*If you're not familiar with RANSAC methods for robust fitting, see th

Object detection: Example

- Match non-ignored template features F_t to non-ignored features within search region S_t .
- The "similarity transform" is determined by MLESAC

Visual model update

- After a valid object detection, all features are added to the template after alignment! $\mathbf{p'}_i = \mathbf{M}_{\hat{x}_i} \mathbf{p}_i$, i = 1...N
- Features need to be removed to prevent indefinite growth of model complexity
- Select features to be removed: randomly uniformly sample features to forget! (the distribution of features remains unchanged)

Alien tracker details

- Appearance learning is achieved by addressing the following:
 - Focus on distinctive features: Descriptors alone are ambiguous because they can be interpreted as a valid description for *both*, the object and the surrounding context.
 - Nonstationary appearance: Appearance must be updated according to the novel information provided by the detected object in the current image.
 - Occlusion: Occlusion must be detected in order to avoid updating the wrong appearance contaminating the object template.

Explicit occlusion detection

• The space-time context is used to detect occluders $O_t = \left\{ (\mathbf{p}, \mathbf{d}) \in \mathcal{M}_{C_t} \mid \mathbf{p} \in OBB(\hat{x}_t) \right\} = \left\{ \bigotimes \right\}$

The features in O_t may originate from:

- Object/context ambiguous features,
- Object/context boundary features,
- Features from occluding objects

Assumption:

- Object/context features are relatively few in number while object is visible.
- Features from the occluding object dominate during the occlusion

Occlusion detection: Example

- The space-time context is used to detect occluders $O_t = \left\{ (\mathbf{p}, \mathbf{d}) \in \mathcal{M}_{C_t} \mid \mathbf{p} \in OBB(\hat{x}_t) \right\} = \left\{ \bigotimes \right\}$
- The features in O_t may originate from:
- Object/context ambiguous features,
- Object/context boundary features,
- Features from occluding objects

The Alien tracker implementation

- Quite a few parameters to set!
- See the original paper for details:

Pernici, F. and Del Bimbo, A., Object Tracking by Oversampling Local Features, IEEE TPAMI2013

- E.g.: 1000 SIFT features for the object classifier and 1500 SIFT features for the context classifier.
- From the authors: "...Current ALIEN implementation runs at 320x240@11 FPS in a Intel i7 CPU quad core @ 2.80GHz. The system is implemented with Matlab except for the SIFT which is based on OpenCV."

Alien tracking examples

• Tracking/Learning/Detection of a face:

Note the random search once the target has been lost...

Alien tracking examples

• Tracking/Learning/Detection of a person:

Alien tracking examples

• Further comparison to related trackers

Alien vs Predator

	TLD	Alien
Visual model	 Nonparametric: A collection of intensity templates (15x15 pixels) Discriminative by a NN classifier Translation + scale 	 Nonparametric: Keypoints (SIFT) ~2500 Discriminative by a NN classifier Translation +scale+ angle=similarity transform
Update	 Occlusion/drift detection Retrospective update – update when absolutely sure Just add an instance to the collection Forget instances by uniform sampling 	 Occlusion/drift detection Update with all features if not occluded Just add an instance to the collection Forget instances by uniform sampling
Matching	 Flow for short-term tracking Template-based detector in parallel Detects only when not occluded 	 Feature selection on keypoints Matching by RANSAC-like algorithm Detects even under partial occlusion

Rather than differences, think about the similarities, which are plenty!

Long-Term Architecture Implementation Issues

Tracker	Short-term tracker	Detector	Interaction
Alien [6]	Keypoints (SIFT)	Keypoints (SIFT)	F-B, Ransac
TLD [1]	Optical flow	Random forest	P-N learning
MUSTER [2]	Correlation filter	Keypoints (SIFT)	F-B, Ransac
LCT [3]	Correlation filter	Random fern	K-NN, response thresh.
CMT [4]	Keypoints (flow)	Keypoints (static)	F-B, clustering
PTAV [5]	Correlation filter	CNN (Siam. Net.)	CNN confidence score
	<u> </u>		

Approaches from different methodologies

- Prohibits tight interaction e.g., feature/model sharing
- Leads to complicated implementation

[1] Kalal et al., Tracking-Learning-detection, TPAMI 2010

[2] Ma et al., Long-Term Correlation Tracking, CVPR 2015

[3] Hong et al., MUlti-Store Tracker (MUSTer): a Cognitive Psychology Inspired Approach to Object Tracking, CVPR 2015

[4] Nebehay et al., Clustering of Static-Adaptive Correspondences for Deformable Object Tracking, CVPR 2015

[5] Fan et al., Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking, ICCV 2017

[6] Pernici, F. and Del Bimbo, A., Object Tracking by Oversampling Local Features, TPAMI2013

Long-Term Architecture Implementation Issues

Tracker	Short-term tracker	Detector	Interaction	
Alien [6]	Keypoints (SIFT)	Keypoints (SIFT)	F-B, Ransac	
TLD [1]	Optical flow	Random forest	P-N learning	
MUSTER [2]	Correlation filter	Keypoints (SIFT)	F-B, Ransac	
LCT [3]	Correlation filter	Random fern	K-NN, response thresh.	
CMT [4]	Keypoints (flow)	Keypoints (static)	F-B, clustering	
PTAV [5]	Correlation filter	CNN (Siam. Net.)	CNN confidence score	
FCLT [7]	Correlation filter	Correlation filter	Correlation uncertaint	
Shared target representation: tight interaction, efficient implementation				

- Short-term tracker and a detector within a single methodology
- A single DCF learner, two interacting models

[7] Lukežič, Čehovin, Vojir, Matas, Kristan, FuCoLoT -- A Fully-Correlational Long-Term Tracker, ACCV 2018

FuCoLoT: <u>Fully Correlational Long-term Tracker</u> (FCLT)

- Discriminative correlation filter in two separate components.
- Detector activated when ST not confident.
- Motion model used with detector.

¹Lukežič et al., Discriminative Correlation Filter Tracker with Channel and Spatial Reliability, IJCV 2018

Short-term:

orrelation

Detector:

FCLT: ST and Detector learning

- Short-term (ST) model is a CSRDCF¹ with standard update
- Detector:
 - Standard DCF cannot be used for image-wide detection
 - Utilize constrained learning from CSRDCF¹ from a wider region
 - Several object models updated at various time scales

¹Lukežič, Vojir, Čehovin Zajc, Matas and Kristan, Discriminative Correlation Filter Tracker with Channel and Spatial Reliability, IJCV 2018

FCLT: Detector application

FCLT : ST tracking failure detecton

- Reliability score q_t on correlation response R_t^{ST} $q_t = MAX(R_t^{ST}) \times PSR(R_t^{ST})$ ש^{ו2} ס^{יד} ס^י $*H_t^{ST} = R_t^{ST}$ • Threshold on the ratio: $\frac{\overline{q_t}}{\overline{q_t}}$ $\overline{q_t}$ is mean over past frames • When failure detected: Frames
 - Activate detector
 - Stop updating visual model

Example: Tracking with FCLT

Short-term tracker

Detector

Tracking uncertainty

Lukežič, Čehovin, Vojir, Matas, Kristan, FuCoLoT -- A Fully-Correlational Long-Term Tracker, ACCV 2018

Redetection capability (LT₀ vs LT₁)

Re-detects after target re-appears

MDNet²

Never recovers after drift

[1] Lukežič, Čehovin, Vojir, Matas, Kristan, FuCoLoT -- A Fully-Correlational Long-Term Tracker, ACCV2018
 [2] Nam, Han, Learning, Multi-Domain Convolutional Neural Networks for Visual Tracking, CVPR2016

Extension of D3S to LT setup

• Similar to FCLT, only using DCF from GEM for global re-detection (and few additional upgrades, such as MDNet verifier)

A 2D Object Assumption in Standard Trackers

- Existing tracking methods treat a tracked object as a 2D structure
- Problem: Cannot distinguish between pose change and (self)occlusion

WARMISSING HILL

1.1111111111111111

Extension to RGBD tracking

 Extend FCLT by 3D reconstruction to improve occlusion detection

Localization & re-detection

View

ē

3D object pre-image

Kart, Lukezic, Kristan, Kämäräinen, Matas, Object Tracking by Reconstruction with View-Specific Discriminative Correlation Filters CVPR2019

Object tracking by reconstruction (OTR)

• Top performance among all RGBD trackers on PTB [Song et al., ICCV2013] and STC [Xiao et al.] benchmarks.

Kart, Lukezic, Kristan, Kämäräinen, Matas, Object Tracking by Reconstruction with View-Specific Discriminative Correlation Filters CVPR2019

Recent deep LT developments (2018) https://github.com/xiaobai1217/MBMD

- Region proposal network akin to SSD¹ and SiamRPN²
- Verification network, essentially MDNet³ ٠
- Interaction akin to FCLT •

¹Liu et al., SSD: Single shot multibox detector, ECCV2016

²Li et al., High Performance Visual Tracking with Siamese Region Proposal Network, CVPR2018 ³Nam et al., Learning multi–domain convolutional neural networks for visual tracking, CVPR2016

Zhang et al., Learning regression and verification networks for long-term visual tracking, ArXiv 2018

MBMD deep long-term tracker

Modern state-of-theart trackers are based on transformers (e.g., STARK-like) with a large localization range + a discriminator like Dimp

Zhang et al., Learning regression and verification networks for long-term visual tracking, ArXiv 2018 https://github.com/xiaobai1217/MBMD

References

- TLD:
 - Kalal, Z., Mikolajczyk, K. and Matas, J., <u>Tracking-Learning-Detection</u>, IEEE TPAMI2010
 - Page + code: <u>http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/</u>
- Alien:
 - Pernici, F. and Del Bimbo, A., <u>Object Tracking by Oversampling Local Features</u>, IEEE TPAMI2013
 - Page + demo: <u>http://www.micc.unifi.it/pernici/</u>
- FCLT:
 - Lukežič, Čehovin, Vojir, Matas, Kristan, FuCoLoT -- A Fully-Correlational Long-Term Tracker, ACCV 2018

Acknowledgment

• Thanks to Jiri Matas and Federico Pernici, for kindly sharing some of their slides that I used in preparation of this lecture.