
Mid-semester questionnaire

• Open until this Thursday (20.4.)

• Please give feedback on lectures/assignments

• Help us improve the course
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Previously at ACVM…

• Posterior is non-Gaussian, solve by MC → Particle filter (PF)

• Recursion replaced by (re)sampling and re-weighting: Bootstrap PF
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Advanced CV methods
Fully-trainable trackers – deep learning for tracking

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme,
Fakulteta za računalništvo in informatiko,

Univerza v Ljubljani



Recall tracking by online classifiers

Postive training examples

Negative training examples

The current image
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Feature extraction + classification



Traditional vs. modern approach

Traditional:

• (i) extract hand-crafted features, (ii) train a classifier

Modern (“started” in late 90s, entered mainstream in 2012):

• Jointly learn features AND the classifier 

(without specifying where feature extraction ends and classifier begins)

Feature extraction
(e.g., HOG, SIFT, FV,…)

pixels

“panda”?Classifier

pixels

“panda”?end-to-end learning of features and classifiers
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Recall a simple neural network

A sigmoid neuron: 

𝑥1

𝑥2

𝑥3

+ 𝑦

𝑦 = 𝑔(෍

𝑖

𝑤𝑖𝑥𝑖)

A weighted sum of values 
𝑥𝑖, transformed by a 
nonlinear function 𝑔(⋅):

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑦

A network of neurons: 

𝑦 = 𝑓(𝑥1: 𝑥6; 𝒘)

𝑔(⋅)
𝑤1

𝑤2

𝑤3
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A traditional vs. convolutional neural network (CNN)

All weights potentially 
different values.

A convolutional neural network
(CNN)

A fully connected neural network
(fcn)

• See, e.g. http://cs231n.stanford.edu/, for a good intro to CNNs 

input

output

input

output
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http://cs231n.stanford.edu/


The basic CNN architecture

…

*

Convolution filters

…

features

ReLU
Reduce

(pooling) …

features

0

0

1

• The filters in all layers (and other free 

parameters) are trained to maximize 

the network accuracy.
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cat

dog

cow

Krizhevsky et al., Imagenet classification with deep convolutional neural networks, NIPS2012 (>100k citations!)

fc fc

conv

conv
conv conv



CNNs for object recognition (and more…)

• Task to answer: “Which object category is in the image?”

(Introduced in 2006 by Fei Fei Li et al.) 

14 million labeled images, 
20K categories
http://www.image-net.org/

cat

dog

cow

0

0

1

Input training 
image

Output ground 
truth

Feature generalization:
Early layers of the pre-trained network 
(backbone) can be repurposed for 
other tasks, e.g., for segmentation…
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Krizhevsky et al., Imagenet classification with deep convolutional neural networks, NIPS2012 (>100k citations!)

Backbone



CNN architectures for tracking (2015 onward)

• CNNs were first successfully applied to recognition, detection, semantic 

segmentation, optical flow, …

• But it took a while to come up with architectures and learning 

strategies appropriate for online tracking

• Overall: tracking has drawn significantly on object detection research

• In the following we will overview what I consider milestones in CNN 

trackers that made significant leaps in performance 

(this is by no means an exhaustive overview)
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MDNet: Multi-Domain Convolutional Neural Network Tracker

• Several attempts made to harvest the CNN potential in tracking

• Until 2015 the CNN trackers did not exceed handcrafted DCF trackers

• In 2015 a tracker called MDNet [1] won the VOT2015 challenge

• Core ideas:

• Draw on recent developments 

in object detection/recognition

• Light-weight backbone

• Efficient backbone pre-training

• Efficient online training
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[1] Nam and Han, Learning Multi-Domain Convolutional Neural Networks for Visual Tracking, CVPR2016
https://github.com/hyeonseobnam/MDNet

0.9



• Sample bounding boxes (around t-1 loc.)

• Compute classification score

• Take the BB with max. score

• Regress the BB parameters

MDNet: Target localization principle

→

𝛿𝑥1
𝛿𝑥2
𝛿𝑦1
𝛿𝑦2

→ [0,1]

Nam and Han, Learning Multi-Domain Convolutional Neural Networks for Visual Tracking, CVPR2016 12

Target location at 𝑡 − 1

𝑡 𝑡



MDNet: backbone pre-training

• Pre-trained on sequences, with each sequence having its own fc6

• Assumption: 

• Each sequence is its own tracking domain and requires a specialized fc6

• But the backbone should be shared among all “domains” (sequences)

In each selected frame, sample 
50 pos & 200 neg samples
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Ground truth



MDNet: Initialization on a new sequence

• After pre-training, the fc6 layers are removed and a new fc6 is created

• Initialization frame:

• Fine-tune fc4/5 layers train fc6 from scratch

• Train bounding box regression head

• During tracking: fine-tune all fc layers

Initialization frame

𝛿𝑥1
𝛿𝑥2
𝛿𝑦1
𝛿𝑦2
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MDNet: Online tracking

• Sample target positions, classify, output the one with max score

• Fine-tune all fc layers (fc4, fc5,fc6)

• Hard negative mining 

(negative samples with a high “positive” score)

• Short-term and long-term memory samples

• Do not update during target loss

Target localization Target hard negative mining
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MDNet in action

• Remarkably robust

• I suspect, that smart 

training samples mining 

and careful updating 

significantly contributes 

to performance…

Nam and Han, Learning Multi-Domain Convolutional 
Neural Networks for Visual Tracking, CVPR2016
Jung, Son, Baek, Han, Real-Time MDNet, ECCV2018
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Recall the idea behind tracking by correlation

• Problem: Intensity values are very weak features

• Correlation response not well expressed at target 

location

• Tracking may quickly drift when the target 

appearance changes

Image: 𝒇 Template: 𝐡

⋆ =

Correlation output: 𝐠′ = 𝒇 ⋆ 𝒉

Using all grayscale image pixels 
(standard correlation)

Desired correlation output: 𝐠
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CNN as a feature extractor

• Apply a CNN for object detection pretrained on Imagenet for many 

categories (~1000) and cut away the higher layers

[1] K He, X Zhang, S Ren, J Sun, Deep Residual Learning for Image Recognition, CVPR2016

cat

dog

cow

zebra

vase

…

0

0

1

0

0
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Nth layer features

=

CNN as a feature extractor

• Apply a CNN for object detection pretrained on Imagenet for many 

categories (~1000) and cut away the higher layers

[1] K He, X Zhang, S Ren, J Sun, Deep Residual Learning for Image Recognition, CVPR2016
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Robustifying template correlation by CNN features
Image: 𝒇 Template: 𝐡

⋆ =

Correlation output: 𝐠′ = 𝒇 ⋆ 𝒉

Using all grayscale image pixels 
(standard correlation)

⋆ =

Correlation output

Better, but not great...

20



Robustifying template correlation by CNN features

• Issue: CNN features were pre-trained for classification, not for discriminative 

localization (i.e., cannot distinguish between similar objects)

Template

Search region

Network Θ

=

Correlation output

Features

Network Θ

Features

Desired output

Bertinetto et al., Fully-Convolutional Siamese Networks for Object Tracking, ECCV VOT2016
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Robustifying template correlation by CNN features

• Solution: pre-train the backbone parameters, such that the correlation will 

yield a well-expressed maximum for an arbitrary target

Template

Search region

Network Θ

=

Correlation output

Features

Network Θ

Features loss(Θ)

Desired output
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Bertinetto et al., Fully-Convolutional Siamese Networks for Object Tracking, ECCV VOT2016



SiamFc (Siamese fully conv. net): Pre-training

• ImageNet VID challenge – a video dataset with targets annotated

• Take many pairs of random images from the same sequence Δ frames 

apart, compute the correlation response, and minimize the loss w.r.t. Θ

Δ

A
 r

an
d

o
m

 v
id

eo
se

q
u

en
ce

Template

Search region

Network Θ

Network Θ Correlation output

Ideal response
(from ground truth)

loss(Θ)

Bertinetto et al., Fully-Convolutional Siamese Networks for Object Tracking, ECCV VOT2016
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SiamFc: Tracking

• Template extracted in the first frame

• Target localization in 𝑡-th frame: maximum of the correlation between 

search region and the template (both encoded by CNN)

Template features
Network Θ

24

Initial frame
Search region features

Network Θ

𝑡
Correlation output

Target position: 
max location



SiamFc: Scale estimation

• Template extracted in the first frame

• Target localization in 𝑡-th frame: 

correlate with the template on several 

resized search regions

Bertinetto et al., Fully-Convolutional 
Siamese Networks for Object Tracking, 
ECCV VOT2016

Features
Network Θ

25

Initial frame



SiamFc: Tracking examples

• A fully-convolutional Siamese network

• Template is not updated during tracking

• Super fast: ~60fps

• Recent work on template updating

• Extension with segmentation

Video credit: Jack Valmadre

Bertinetto et al., Fully-Convolutional Siamese Networks for Object Tracking, 
ECCV VOT2016

Zhang et al., Learning the Model Update for Siamese Trackers, 
ICCV2019

Wang et al. Fast Online Object Tracking and Segmentation: 
A Unifying Approach. CVPR 2019
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Issues with bounding box estimation

• Standard approach: resize the input image to 

several scales and correlate on each

• Poor approximation of the aspect change…

Explicitly test several scales

Slide adapted from: Martin Danneljan 27



A standard approach for object detection

• Stage 1: identify potential regions with objects – region proposals (RP)
(requirement: the RP classifier has to be fast)

• Stage 2: classify each selected region by a strong classifier into categories
Fast object/background classifier Generated region proposals After final verification (Stage 2)

Dog: 0.99

Region proposal network (RPN) Region recognition network

Probability of each category

Ren et al., Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NIPS215
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The region proposal network (RPN)

• At each location: test for k bounding box shapes

• Tests a hypothesis that a certain shape bounding box is positioned there

• Predicts “delta” coordinates to that hypothesized box [𝛿𝑥, 𝛿𝑦, 𝛿𝑤, 𝛿ℎ]

Ren et al., Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NIPS215

𝑘
2× 𝒌 values:
Does k-th anchor 
contain an object?
[𝑝 𝑦𝑒𝑠 , 𝑝(𝑛𝑜)]

4× 𝒌 values: 
How should I correct 
the anchor bounding 
box size/position?
[𝛿𝑥 , 𝛿𝑦, 𝛿𝑤, 𝛿ℎ]

𝑘

29



SiamRPN – an RPN added to a Siamese tracker

• Issue: the standard RPN is trained for general object detection

• Solution: a region proposal network is modulated by the template so 

that region proposals get specialized for the template

Li et al., High Performance Visual Tracking with Siamese Region Proposal Network, CVPR2018
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SiamRPN: Tracking example

• Aspect change is well 

addressed 

• 160fps (PyTorch, PC 

with an Intel i7, 12G 

RAM, Nvidia GTX 1060)

• Improved version 

proposed recently [1]

[1] Li et al., SiamRPN++: Evolution of 
Siamese Visual Tracking with Very Deep 
Networks, CVPR2019

31



Why not learn a discriminative template?

Siamese networks issues

• Localization by a generative template – not by a discriminative template

• Cannot focus on features that separate the selected target from the 

background

CNN features: 𝜙(𝒇) CNN Template: 𝜙(𝐡)

⋆ =

Correlation output: 
𝐠′ = 𝝓(𝒇) ⋆ 𝝓(𝒉)
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4th layer features

=

Training a DCF on CNN features

• Apply a Resnet18 [1] pretrained on ImageNet and consider the output 

features of the 4th layer 

DCF

⋆
1 2 3 4

[1] K He, X Zhang, S Ren, J Sun, Deep Residual Learning for Image Recognition, CVPR2016

Recall: A classical DCF training with FFT 
has several drawbacks…
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A DCF as a CNN layer

• A DCF of any size can be formulated as a single output correlation layer.

• Any nonlinear transformation to the output can be enforced.

• The DCF cost function:

[1] Danelljan et al., ATOM: Accurate Tracking 
by Overlap Maximization, CVPR2019

Issue: how to train 
the DCF?

DCF layer

⋆1 2 3 4

nonlinearity 𝑔(𝑥)
(pRELU):

g 𝑥 = ൝
𝑥; 𝑥 > 0

𝛼 𝑒𝑥/𝛼 − 1 ; 𝑥 < 0
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A DCF as a CNN layer

• Efficient training by a conjugated gradient descent, implemented via 

backprop methods already in CNN – fully trainable within the CNN

• Introduced as part of ATOM [1].

Graph from: Martin Danneljan

[1] Danelljan et al., ATOM: Accurate Tracking 
by Overlap Maximization, CVPR2019

DCF layer

⋆1 2 3 4

nonlinearity 𝑔(𝑥)
(pRELU):

g 𝑥 = ൝
𝑥; 𝑥 > 0

𝛼 𝑒𝑥/𝛼 − 1 ; 𝑥 < 0
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Recall the issues with bounding box estimation

• Standard approach: Apply a DCF to differently resized images

• Poor approximation of the aspect change…
Explicitly test several scales

Slide adapted from: Martin Danneljan 36



Apply another CNN for bounding box fitting

• Could apply an IoU-net [1] to 

predict the box fit 

(without knowing the GT)

• But IoU-net is trained for 

object detection and

is not aware of the selected 

target!

• A modification was proposed 

by [2].
[1] IOUNet: B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang. Acquisition of localization 
confidence for accurate object detection. In ECCV, 2018
[2] Danelljan et al., ATOM: Accurate Tracking by Overlap Maximization, CVPR2019

?
CNN IOU Pred

0.63
IoU

Te
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n

vecto
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Mod. 

Slide adapted from: Martin Danneljan 37



ATOM: Accurate Tracking by Overlap Maximization

1. Approximately localize by the deep DCF

2. Generate the proposal at DCF output

3. Refine the proposal by the modified IoU-net

4. Update the deep DCF 

Frame t+1Frame tInitial frame

Slide adapted from: Martin Danneljan 38



ATOM and beyond

• The bounding box prediction network is trained on three huge datasets [1]

• Recent extension DiMp [1] (DCF training improved & hard negative mining added)

[1] Danelljan et al., ATOM: Accurate Tracking by Overlap Maximization, CVPR2019
[2] Bhat et al., Learning Discriminative Model Prediction for Tracking, ICCV2019

Videos curtesy of Martin Danneljan

30-40fps

39

ATOM DiMp



Challenges for Template-Based Trackers

[1] Danelljan et al. ECO: Efficient Convolution Operators for Tracking. CVPR 2017
[2] Bertinetto et al. Fully-Convolutional Siamese Networks for Object Tracking. ECCVW 2016
[3] Li et al. SiamRPN++: Evolution of Siamese Visual Tracking With Very Deep Networks. CVPR 2019
[4] Danelljan et al. ATOM: Accurate Tracking by Overlap Maximization. CVPR 2019
[5] Wang et al. Fast Online Object Tracking and Segmentation: A Unifying Approach. CVPR 2019

Exhaustive scale-space search [1,2]

Region proposals [3] Bbox refinement, regression [4]

Scale change

Scale + aspect change

Rotated bbox (segmentation) [5]

Drawbacks:

• Two stage approach
prevents end-to-end learning

• Template is not 
discriminatively updated
similar objects, significant 
appearance change
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Video Object Segmentation

Initialization Prediction (segmentation)

• Drawbacks:

• Optimized for large objects

• Cannot address significant appearance changes

• Cannot address fast moving targets

• Often computationally intensive

[1] Caelles et al. One-shot video object segmentation, CVPR 2017
[2] Chen et al. Blazingly fast video object segmentation, CVPR 2018
[3] Cheng et al. Fast and accurate online video object segmentation via 
tracking parts, CVPR 2018
[4] Hu et al. Video matxh: Matching based video object segmentation, 
ECCV 2018
[5] Voigtlaender et al. Online adaptation of convolutional neural 
networks for 
video object segmentation, BMVC 2017
[6] Yang et al. Efficient video object segmentation via network 
modulation, CVPR 2018
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Discriminative Tracking by Segmentation (D3S)

• Single-shot segmentation network

• Two target appearance models

• Geometrically constrained Euclidean Model (GEM)

Robust localization

• Geometrically Invariant Model (GIM)

Address significant deformations

• Fusion for accurate segmentation

(Refinement pathway)

• Bounding box fitted to the mask

(if required)

Lukežič, Matas, Kristan, D3S -- A Discriminative Single Shot Segmentation Tracker, CVPR2020
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D3S: Geometrically Constrained Euclidean Model (GEM)

• Deep discriminative correlation filter (DCF) 

formulation [1]

• Localization:

• Correlation response: 

target center likelihood

• Required for segmentation:

per pixel target region likelihood

[1] Danelljan et al. ATOM: Accurate Tracking by Overlap Maximization. CVPR 2019

Distance transform

43



D3S: Geometrically Invariant Model (GIM)

• Localization:

• Per-pixel cosine similarity

with XB and XF

Target 
features

Background 
features

Target similarity

Background similarity 

Posterior

Two sets of features extracted on the first frame

Initialization  frame
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D3S: Refinement Pathway
Input image GIM outputGEM output Output

• Robust localization
(selector)

• Not accurate
(target center only)

• Per-pixel segmentation
• Cannot distinguish 

similar targets

Low resolution
(Due to backbone reduction)
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D3S: Discriminative Single Shot Segmentation Tracker

• Pre-trained for segmentation task only

Backbone pre-trained on ImageNet

• YouTube-VOS [1]: 3471 videos

with ground-truth segmentation masks

• 40 epochs with 1000 iterations 

batch size: 64 image pairs

• Pre-training: 20 hours on a single GPU (Nvidia 1080 GTX)

• Backbone is fixed during online tracking

[1] N. Xu et al. YouTube-VOS: a large-scale video object segmentation benchmark. arXiv:1809.03327, 2018
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D3S: Tracking results (in 2020)

• State-of-the-art results on three tracking benchmarks

VOT 2016 [1], VOT 2018 [2] and GOT-10k [3]

• Comparable to state-of-the-art trackers on TrackingNet [4]

• SOTA trackers: 

• Offline train for localization on large tracking datasets

• Generalization capability of a tracker

Even though trained on segmentation task only

[1] Kristan et al. The Visual Object Tracking VOT2016 Challenge Results, ECCVW 2016
[2] Kristan et al. The sixth Visual Object Tracking VOT2018 challenge results, ECCVW 2018
[3] Huang et al. GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild, TPAMI 2019
[4] Mueller et al. TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild, ECCV 2018
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D3S: Video Segmentation

[1] Perazzi et al. A benchmark dataset and evaluation methodology for video object segmentation. CVPR 2016
[2] Pont-Tuset et al. The 2017 davis challenge on video object segmentation. arXiv:1704.00675, 2017

• Evaluated on two segmentation benchmarks: DAVIS2016 [1] and DAVIS2017 [2]

• Results comparable to the state-of-the-art segmentation methods

• An order of magnitude faster (do not require heavy fine-tuning)

• Not trained on DAVIS datasets

• Performance better than segmentation tracker 

(SiamMask), but still in real-time
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D3S: Qualitative Examples

Similar targetsTracking part of an object

51

Lukežič, Matas, Kristan, D3S -- A Discriminative Single Shot Segmentation Tracker, CVPR2020



D3S: Qualitative Examples

• Target deformation
• Scale and aspect change

52

Lukežič, Matas, Kristan, D3S -- A Discriminative Single Shot Segmentation Tracker, CVPR2020



D3S2 published recently

• More advanced architecture

53

Lukežič, Matas, Kristan, A Discriminative Single-Shot Segmentation 
Network for Visual Object Tracking, IEEE TPAMI, 2021



Transformers

• Transformers have emerged with the seminal paper in 20171

• An example of the most trivial “attention operation”

54

1 Vaswani et al., Attention is all you need, NIPS 2017

3xwxh

whxwh

𝑄𝐾𝑇

Similarity between 
each key and value

෨𝑉

whx3
3xwxh

Attention essentially computes
෨𝑉 as a reconstruction of pixels in V.

K Q V

whx3 whx3 whx3

key query value

(Scaled dot-product attention)



Local attention as image denoising
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Input

Output

Input

Output



The main (en)coding block

56

Input

Output

The transformer block:

Vaswani et al., Attention is all you need, NIPS 2017



Recent transformer tracker: STARK
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Adapted
query

S … search region

T … template

ResNet

ℎ𝑆 × 𝑤𝑠 × 𝑐

ℎ𝑇 × 𝑤𝑇 × 𝑐

Reshape

Reshape

Decoder:
transformer

Pretrained
query

K,V

Q
FCNs

Top left bbox corner

Botom right bbox corner

Reshape

ℎ𝑆 ×𝑤𝑠 × 𝑐

Yan et al., Learning Spatio-Temporal Transformer for Visual Tracking, ICCV2021

Encoder:
transformer

K,V,Q

Consider only search 
region features 

MLPTarget presence
score [0,1]



STARK in action

• Large search range (partial occlusion handled well) & accurate bbox

58

… Ground truth mask … Tracker bounding box



STARK in action

• The forward pass filter construction in decoder not robust to distractors
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D3S2STARK

[D3S2] Lukežič, Matas, Kristan, A Discriminative Single-Shot Segmentation Network for Visual Object Tracking, TPAMI 2021

… Ground truth mask … Tracker bounding box



Recent works aim at multiple “tasks”

60

Yan et al., Towards Grand Unification of Object Tracking, ECCV 2022

• Codename: “Unicorn”

• Attempting to unify the tracking tasks

• A single backbone handling different input/output specifications

• Allows learning a common network from MANY datasets with many tasks

https://arxiv.org/abs/2207.07078


Deep learning for tracking – summary
• Various architectures for localization overviewed

• CNN patch classifier (MDNet)

• CNN backbone trained for localization by correlation (SiamFc)

• CNN pre-trained features + a deep DCF (ATOM)

• Bounding box estimation

• Regression (MDNet)

• Region proposals, i.e., regression to several hypotheses (SiamRPN)

• CNN for overlap optimization (a modified IoUNet in ATOM)

• Beyond bounding boxes (D3S, SiamMask)

• Closing the gap between tracking and video segmentation

• Transformers (STARK, TransT, MixFormer), more recent works (Unicorn)...
61

https://github.com/researchmm/Stark
https://github.com/chenxin-dlut/TransT
https://github.com/MCG-NJU/MixFormer
https://github.com/MasterBin-IIAU/Unicorn
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