Mid-semester questionnaire

Written exam detailed info in case of online exam:

- Installation guideline and exam protocol (read carefully!)
- Link to exam.net (log in and enter the exam key): https://exam.net
- The current exam Key (activated at the exam start): <tba>
- Zoom link for the exam (open in your smart phone): <tba>
- Crucial: (1) do not log out once entering the key in exam.net; (2) Write down the exam key on a sheet of paper -- once the SEB starts, it will lock down your comp.

Online exam protocol and setup instructions

Announcements & Discussion

Questionaire about the course Advanced topics in computer vision (2022/23)

- Open until this Thursday (20.4.)
- Please give feedback on lectures/assignments
- Help us improve the course

Previously at ACVM...

• Posterior is non-Gaussian, solve by MC \rightarrow Particle filter (PF)

• Recursion replaced by (re)sampling and re-weighting: Bootstrap PF

Resample

Predict

Update

Univerza v Ljubljani

Advanced CV methods Fully-trainable trackers – deep learning for tracking

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani

Recall tracking by online classifiers

Traditional vs. modern approach

Traditional:

• (i) extract hand-crafted features, (ii) train a classifier

Modern ("started" in late 90s, entered mainstream in 2012):

• Jointly learn features AND the classifier

(without specifying where feature extraction ends and classifier begins)

Recall a simple neural network

A traditional vs. convolutional neural network (CNN)

A convolutional neural network (CNN) output input

• See, e.g. <u>http://cs231n.stanford.edu/</u>, for a good intro to CNNs

The basic CNN architecture

CNNs for object recognition (and more...)

• Task to answer: "Which object category is in the image?"

(Introduced in 2006 by Fei Fei Li et al.)
14 million labeled images,
20K categories
http://www.image-net.org/

Feature generalization: Early layers of the pre-trained network (backbone) can be repurposed for other tasks, e.g., for segmentation...

Krizhevsky et al., Imagenet classification with deep convolutional neural networks, NIPS2012 (>100k citations!)

CNN architectures for tracking (2015 onward)

- CNNs were first successfully applied to recognition, detection, semantic segmentation, optical flow, ...
- But it took a while to come up with architectures and learning strategies appropriate for online tracking
- Overall: tracking has drawn significantly on object detection research
- In the following we will overview what I consider milestones in CNN trackers that made significant leaps in performance (this is by no means an exhaustive overview)

MDNet: Multi-Domain Convolutional Neural Network Tracker

- Several attempts made to harvest the CNN potential in tracking
- Until 2015 the CNN trackers did not exceed handcrafted DCF trackers
- In 2015 a tracker called MDNet^[1] won the VOT2015 challenge
- Core ideas:
 - Draw on recent developments in object detection/recognition
 - Light-weight backbone
 - Efficient backbone pre-training
 - Efficient online training

https://github.com/hyeonseobnam/MDNet ^[1] Nam and Han, Learning Multi-Domain Convolutional Neural Networks for Visual Tracking, CVPR2016

input

conv1

conv2

0.9

Bounding box regression head

fc4 fc5

conv3

fc6

MDNet: Target localization principle

- Compute classification score
- Take the BB with max. score \bullet
- **Regress the BB parameters** ullet

Nam and Han, Learning Multi-Domain Convolutional Neural Networks for Visual Tracking, CVPR2016

MDNet: backbone pre-training

- Pre-trained on sequences, with each sequence having its own fc6
- Assumption:
 - Each sequence is its own tracking domain and requires a specialized fc6
 - But the backbone should be shared among all "domains" (sequences)

In each selected frame, sample

MDNet: Initialization on a new sequence

- After pre-training, the fc6 layers are removed and a new fc6 is created
- Initialization frame:
 - Fine-tune fc4/5 layers train fc6 from scratch
 - Train bounding box regression head
- During tracking: fine-tune all fc layers

MDNet: Online tracking

• Sample target positions, classify, output the one with max score

Target localization

- Fine-tune all fc layers (fc4, fc5, fc6)
 - Hard negative mining

(negative samples with a high "positive" score)

- Short-term and long-term memory samples
- Do not update during target loss

Target hard negative mining

MDNet in action

Remarkably robust

 I suspect, that smart training samples mining and careful updating *significantly contributes* to performance...

Nam and Han, Learning Multi-Domain Convolutional Neural Networks for Visual Tracking, CVPR2016 Jung, Son, Baek, Han, Real-Time MDNet, ECCV2018 Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

Hyeonseob Nam and Bohyung Han

Recall the idea behind tracking by correlation

Image: **f**

Template: h

Using all grayscale image pixels (standard correlation)

Correlation output: $\mathbf{g}' = \mathbf{f} \star \mathbf{h}$

- Problem: Intensity values are very weak features
 - Correlation response not well expressed at target location
 - Tracking may quickly drift when the target appearance changes

Desired correlation output: g

CNN as a feature extractor

• Apply a CNN for object detection pretrained on Imagenet for many categories (~1000) and cut away the higher layers

[1] K He, X Zhang, S Ren, J Sun, Deep Residual Learning for Image Recognition, CVPR2016

CNN as a feature extractor

• Apply a CNN for object detection pretrained on Imagenet for many categories (~1000) and cut away the higher layers

[1] K He, X Zhang, S Ren, J Sun, Deep Residual Learning for Image Recognition, CVPR2016

Robustifying template correlation by CNN features

Robustifying template correlation by CNN features

Issue: CNN features were pre-trained for classification, not for discriminative localization (i.e., cannot distinguish between similar objects)

Robustifying template correlation by CNN features

• Solution: pre-train the backbone parameters, such that the correlation will yield a well-expressed maximum for an arbitrary target *Desired* output

Bertinetto et al., Fully-Convolutional Siamese Networks for Object Tracking, ECCV VOT2016

SiamFc (Siamese fully conv. net): Pre-training

- ImageNet VID challenge a video dataset with targets annotated
- Take many pairs of random images from the same sequence Δ frames apart, compute the correlation response, and minimize the loss w.r.t. Θ

SiamFc: Tracking

- Template extracted in the first frame
- Target localization in *t*-th frame: maximum of the correlation between search region and the template (both encoded by CNN)

SiamFc: Scale estimation

- Template extracted in the first frame
- Target localization in *t*-th frame: correlate with the template on several resized search regions

Initial frame

Bertinetto et al., Fully-Convolutional Siamese Networks for Object Tracking, ECCV VOT2016

SiamFc: Tracking examples

- A fully-convolutional Siamese network Bertinetto et al., Fully-Convolutional Siamese Networks for Object Tracking, ECCV VOT2016
- Template is *not updated* during tracking
- Super fast: ~60fps

• Recent work on template updating

Zhang et al., Learning the Model Update for Siamese Trackers, ICCV2019

• Extension with segmentation

Wang et al. Fast Online Object Tracking and Segmentation: A Unifying Approach. CVPR 2019

Issues with bounding box estimation

• Standard approach: resize the input image to several scales and correlate on each

• Poor approximation of the aspect change...

A standard approach for object detection

Ren et al., Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NIPS215

• Stage 1: identify potential regions with objects – region proposals (RP)

(requirement: the RP classifier has to be fast)

• Stage 2: classify each selected region by a strong classifier into categories

The region proposal network (RPN)

Ren et al., Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NIPS215

- At each location: *test for k bounding box shapes*
 - Tests a hypothesis that a certain shape bounding box is positioned there
 - Predicts "delta" coordinates to that hypothesized box $[\delta_x, \delta_y, \delta_w, \delta_h]$

SiamRPN – an RPN added to a Siamese tracker

Li et al., High Performance Visual Tracking with Siamese Region Proposal Network, CVPR2018

- Issue: the standard RPN is trained for general object detection
- Solution: a region proposal network is modulated by the template so that region proposals get specialized for the template

SiamRPN: Tracking example

- Aspect change is well addressed
- 160fps (PyTorch, PC with an Intel i7, 12G RAM, Nvidia GTX 1060)
- Improved version proposed recently [1]

[1] Li et al., SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks, CVPR2019

Siamese networks issues

- Localization by a *generative* template not by a *discriminative* template
- Cannot focus on features that separate the *selected target* from the background

Why not learn a discriminative template?

Training a DCF on CNN features

• Apply a Resnet18 [1] pretrained on ImageNet and consider the output features of the 4th layer

A DCF as a CNN layer

- A DCF of any size can be formulated as a single output correlation layer.
- Any nonlinear transformation to the output can be enforced.

Issue: how to train the DCF?

• The DCF cost function:

$$L(w) = \sum_{j=1}^{m} \gamma_j \|f(x_j; w) - y_j\|^2 + \sum_k \lambda_k \|w_k\|^2.$$

[1] Danelljan et al., ATOM: Accurate Tracking by Overlap Maximization, CVPR2019

A DCF as a CNN layer

 Efficient training by a conjugated gradient descent, implemented via backprop methods already in CNN – fully trainable within the CNN

• Introduced as part of ATOM [1].

60

Number of BackProp calls

80

100

10⁻¹

0

20

40

120

Recall the issues with bounding box estimation

- Standard approach: Apply a DCF to differently resized images
- Poor approximation of the aspect change...

Apply another CNN for bounding box fitting

- Could apply an IoU-net [1] to predict the box fit (without knowing the GT)
- But IoU-net is trained for object detection and is not aware of the selected target!
- A modification was proposed by [2].

[1] IOUNet: B. Jiang, R. Luo, J. Mao, T. Xiao, and Y. Jiang. Acquisition of localization confidence for accurate object detection. In ECCV, 2018
[2] Danelljan et al., ATOM: Accurate Tracking by Overlap Maximization, CVPR2019

ATOM: Accurate Tracking by Overlap Maximization

- 1. Approximately localize by the deep DCF
- 2. Generate the proposal at DCF output
- 3. Refine the proposal by the modified IoU-net
- 4. Update the deep DCF

ATOM and beyond

- The bounding box prediction network is trained on three huge datasets [1]
- Recent extension DiMp [1] (DCF training improved & hard negative mining added)
 30-40fps
 ATOM

[1] Danelljan et al., ATOM: Accurate Tracking by Overlap Maximization, CVPR2019[2] Bhat et al., Learning Discriminative Model Prediction for Tracking, ICCV2019

Videos curtesy of Martin Danneljan

Challenges for Template-Based Trackers

Scale change

Exhaustive scale-space search [1,2]

Bbox refinement, regression [4]

Rotated bbox (segmentation) [5]

Drawbacks:

- Two stage approach prevents end-to-end learning
- Template is not discriminatively updated similar objects, significant appearance change

[1] Danelljan et al. ECO: Efficient Convolution Operators for Tracking. CVPR 2017
 [2] Bertinetto et al. Fully-Convolutional Siamese Networks for Object Tracking. ECCVW 2016
 [3] Li et al. SiamRPN++: Evolution of Siamese Visual Tracking With Very Deep Networks. CVPR 2019
 [4] Danelljan et al. ATOM: Accurate Tracking by Overlap Maximization. CVPR 2019
 [5] Wang et al. Fast Online Object Tracking and Segmentation: A Unifying Approach. CVPR 2019

Video Object Segmentation

- Drawbacks:
 - Optimized for large objects
 - Cannot address significant appearance changes
 - Cannot address fast moving targets
 - Often computationally intensive

[1] Caelles et al. One-shot video object segmentation, CVPR 2017[2] Chen et al. Blazingly fast video object segmentation, CVPR 2018[3] Cheng et al. Fast and accurate online video object segmentation via tracking parts, CVPR 2018

[4] Hu et al. Video matxh: Matching based video object segmentation, ECCV 2018

[5] Voigtlaender et al. Online adaptation of convolutional neural networks for

video object segmentation, BMVC 2017

[6] Yang et al. Efficient video object segmentation via network modulation, CVPR 2018

Discriminative Tracking by Segmentation (D3S)

- Single-shot segmentation network
- Two target appearance models
 - Geometrically constrained Euclidean Model (GEM) Robust localization
 - Geometrically Invariant Model (GIM) Address significant deformations
- Fusion for accurate segmentation (Refinement pathway)
- Bounding box fitted to the mask (if required)

Lukežič, Matas, Kristan, D3S -- A Discriminative Single Shot Segmentation Tracker, CVPR2020

D3S: Geometrically Constrained Euclidean Model (GEM)

- Deep discriminative correlation filter (DCF) formulation [1]
- Localization:
 - Correlation response: target center likelihood
 - Required for segmentation:
 - per pixel target region likelihood \longrightarrow Distance transform

^[1] Danelljan et al. ATOM: Accurate Tracking by Overlap Maximization. CVPR 2019

D3S: Geometrically Invariant Model (GIM)

- Localization:
 - Per-pixel cosine similarity with X^B and X^F

D3S: Refinement Pathway

Input image GEM output GIM output

- Robust localization (selector)
- Not accurate (target center only)
- Cannot distinguish similar targets

•

Per-pixel segmentation

Low resolution (Due to backbone reduction)

D3S: Discriminative Single Shot Segmentation Tracker

- Pre-trained for segmentation task only Backbone pre-trained on ImageNet
- YouTube-VOS [1]: 3471 videos with ground-truth segmentation masks
- 40 epochs with 1000 iterations batch size: 64 image pairs
- Pre-training: 20 hours on a single GPU (Nvidia 1080 GTX)
- Backbone is fixed during online tracking

D3S: Tracking results (in 2020)

- State-of-the-art results on three tracking benchmarks
 VOT 2016 [1], VOT 2018 [2] and GOT-10k [3]
- Comparable to state-of-the-art trackers on TrackingNet [4]
- SOTA trackers:
 - Offline train for localization on large tracking datasets
- Generalization capability of a tracker

Even though trained on segmentation task only

[1] Kristan et al. The Visual Object Tracking VOT2016 Challenge Results, ECCVW 2016
[2] Kristan et al. The sixth Visual Object Tracking VOT2018 challenge results, ECCVW 2018
[3] Huang et al. GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild, TPAMI 2019
[4] Mueller et al. TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild, ECCV 2018

D3S: Video Segmentation

- Evaluated on two segmentation benchmarks: DAVIS2016 [1] and DAVIS2017 [2]
- Results comparable to the state-of-the-art segmentation methods
 - An order of magnitude faster (do not require heavy fine-tuning)
 - Not trained on DAVIS datasets
- Performance better than segmentation tracker

(SiamMask), but still in real-time

	$\mathcal{J}_{\mathcal{M}}{}^{16}$	$\mathcal{F}_{\mathcal{M}}{}^{16}$	$\mathcal{J}_{\mathcal{M}}{}^{17}$	$\mathcal{F}_{\mathcal{M}}^{17}$	FPS
D3S	75.4	72.6	2 57.8	3 63.8	2 25.0
SiamMask	71.7	67.8	54.3	58.5	① 55.0
OnAVOS	1 86.1	1 84.9	1 61.6	1 69.1	0.1
FAVOS	2 82.4	79.5	54.6	61.8	0.8
VM	3 81.0	-	3 56.6	-	3.1
OSVOS	79.8	2 80.6	3 56.6	2 63.9	0.1
PML	75.5	3 79.3	-	-	3.6
OSMN	74.0	72.9	52.5	57.1	3 8.0

[1] Perazzi et al. A benchmark dataset and evaluation methodology for video object segmentation. CVPR 2016[2] Pont-Tuset et al. The 2017 davis challenge on video object segmentation. arXiv:1704.00675, 2017

D3S: Qualitative Examples

Tracking part of an object

Similar targets

Lukežič, Matas, Kristan, D3S -- A Discriminative Single Shot Segmentation Tracker, CVPR2020

D3S: Qualitative Examples

- Target deformation
- Scale and aspect change

Lukežič, Matas, Kristan, D3S -- A Discriminative Single Shot Segmentation Tracker, CVPR2020

D3S₂ published recently

• More advanced architecture

Lukežič, Matas, Kristan, A Discriminative Single-Shot Segmentation Network for Visual Object Tracking, IEEE TPAMI, 2021

Transformers

- Transformers have emerged with the seminal paper in 2017¹
- An example of the most trivial "attention operation" (Scaled dot-product attention)

 QK^T Similarity between each key and value

whxwh

Attention essentially computes \tilde{V} as a reconstruction of pixels in V.

¹ Vaswani et al., Attention is all you need, NIPS 2017

Local attention as image denoising

Output

The main (en)coding block

Vaswani et al., Attention is all you need, NIPS 2017

Recent transformer tracker: STARK

STARK in action

• Large search range (partial occlusion handled well) & accurate bbox

... Ground truth mask

... Tracker bounding box

STARK in action

 The forward pass filter construction in decoder not robust to distractors STARK
 D3S₂

... Ground truth mask

... Tracker bounding box

[D3S₂] Lukežič, Matas, Kristan, A Discriminative Single-Shot Segmentation Network for Visual Object Tracking, TPAMI 2021

Recent works aim at multiple "tasks"

- Codename: "Unicorn"
- Attempting to unify the tracking tasks
- A single backbone handling different input/output specifications
- Allows learning a common network from MANY datasets with many tasks

Yan et al., Towards Grand Unification of Object Tracking, ECCV 2022

Deep learning for tracking – summary

- Various architectures for localization overviewed
 - CNN patch classifier (MDNet)
 - CNN backbone trained for localization by correlation (SiamFc)
 - CNN pre-trained features + a deep DCF (ATOM)
- Bounding box estimation
 - **Regression** (MDNet)
- Imuch more approaches exist **Region proposals**, i.e., regression to several hypotheses (SiamRPN)
 - CNN for overlap optimization (a modified loUNet in ATOM)
- Beyond bounding boxes (D3S, SiamMask)
 - Closing the gap between tracking and video segmentation
- Transformers (STARK, TransT, MixFormer), more recent works (Unicorn)...

References

MDNet branch:

- Nam and Han, Learning Multi-Domain Convolutional Neural Networks for Visual Tracking, CVPR2016
- Jung, Son, Baek, Han, Real-Time MDNet, ECCV2018

Siamese networks:

- SiamFc:
 - Bertinetto et al., Fully-Convolutional Siamese Networks for Object Tracking, ECCV VOT2016
 - Zhang et al., Learning the Model Update for Siamese Trackers, ICCV2019
- SiamRPN:
 - Li et al., SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks, CVPR2019
 - Li et al., High Performance Visual Tracking with Siamese Region Proposal Network, CVPR2018
 - Wang et al. Fast Online Object Tracking and Segmentation: A Unifying Approach. CVPR 2019

Deep DCF:

- Danelljan et al., ATOM: Accurate Tracking by Overlap Maximization, CVPR2019
- Bhat et al., Learning Discriminative Model Prediction for Tracking, ICCV201

Single-shot segmentation networks:

• Lukežič, et al, A Discriminative Single-Shot Segmentation Network for Visual Object Tracking, IEEE TPAMI 2021

Transformers:

- Yan et al., Learning Spatio-Temporal Transformer for Visual Tracking, ICCV2021
- Chen et al., Transformer Tracking, CVPR 2021