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Previously at ACVM…

• Everything is Gaussian and linear → Kalman filter

• But what if dynamics are non-linear? Extended Kalman filter:

Unscented Kalman filter:
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Beyond the basic Kalman

Drawbacks of Kalman filter:

• Assumes a Gaussian posterior and a linear Gaussian dynamic model

Numerical approaches:

• Grid-based methods – discretize the posteriors

• The mid 80’s has seen a rise of Monte Carlo approximation of the 

recursive Bayes filter

• Eventually got known under the common name: Particle filters

4

vs



Analytic representations of posteriors

• A single point : Dirac-delta

current input image current posterior
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Analytic representations of posteriors

• A single point + covariance: a Gaussian distribution

current input image current posterior
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Analytic representations of posteriors

• A weighted point + covariance: a Gaussian mixture

current input image current posterior
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Analytic representations of posteriors

• A set of samples:

current input image

current posterior

Before we continue:
How to sample from a mixture model?
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The remainder of this lecture

1. Sampling from a mixture model

2. A gentle introduction to Monte Carlo integration

3. Application to the Bayes recursive filter equation
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• Let us consider a mixture of 

two Gaussians (N=2):

• Weights form a discrete pdf over the components (N=2):

• Samples are generated in two stages:

1. Sample identity of a component (𝑖 ∼ p(i))

2. Sample a point from i-th component (𝑥 ∼ 𝑁(𝑥; 𝜇𝑖 , Σ𝑖))
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Generating samples from a mixture
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Sampling from a discrete pdf

• Consider a discrete pdf 𝑝 𝑖 with domain {1,2,3}

• Draw a number 𝑦 uniformly from (real) interval [0,1]

• The probability that 𝑦 will fall within the interval occupied by cell 1 

equals to the probability 0.6!

• Thus uniform samplers may be used (e.g. rand())!
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Barber, “Bayesian reasoning and machine learning”, Section 27.1.1. 11



( )cdf p

Sampling from a discrete pdf

• To draw N samples from 𝑝(𝑖):

• Calculate the cumulative pdf (Matlab: cumsum(p))

• Draw N numbers 𝑦𝑗 uniformly from [0,1] (Matlab: rand(N,1)) 

• For each 𝑦𝑗 determine the corresponding index 𝑖.

(i)p

i

For example: we have generated {3,5,5,6,9}.
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( )cdf p

Sampling from a discrete pdf

• “Deterministic” sampling: (preferred in some applications)

• Calculate the cumulative pdf (Matlab: cumsum(p))

• Spread N numbers 𝑦𝑗 evenly from [0,1] (Matlab: 0:1/(N-1):1) 

• For each 𝑦𝑗 determine the corresponding index 𝑖.

(i)p

i

For example: we have generated {1,4,5,8,10}.
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• Samples are generated in two stages:

1. Sample identity of a component (𝑖 ∼ p(i))

2. Sample a point from i-th component (𝑥 ∼ 𝑁(𝑥; 𝜇𝑖 , Σ𝑖))

Sampling example
Some mixture model Sampled points

i=1 ,i=2 ,i=1 ,i=3 ,….
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Monte Carlo integration

• The Recursive Bayes Filter is mainly about integration.

• What is the area of the unit circle?

r

1

0
2 rdA r= 

Calculus gives:

What if you wanted to
avoid calculus?

1-1
-1

1
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Apply sampling

• Sample 𝑥 and 𝑦 uniformly from interval [-1,1]
𝑥, 𝑦 ~𝑈 𝑥, 𝑦 … a uniform distribution

• Check if a sample is within a circle:

• Repeat N times

• Count the proportion of samples

that fall into the circle 𝛼 = 𝑁𝑖𝑛/𝑁.

• Multiply by the area of the

square: 4 inA N N 
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Monte Carlo integration

• The expected value:

• Generate N samples from 𝑝(𝑥):

• A Monte Carlo approximation of a pdf:

(x)
(x) p(x)dx (x)
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Dirac-delta centered at 𝑥(𝑖)

Approximate 𝑝 𝑥 :
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Monte Carlo integration

• A MC approximation of a pdf:

• A MC approximation of the integral:
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Monte Carlo integration

• Sampling from 𝑝 𝑥 may be

difficult, but we can evaluate

it up to a prop. constant:

• Let 𝑞(𝑥) be another pdf that is easy to sample from

• The integral can be rewritten into
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Monte Carlo integration

• Now sample from 𝑞(𝑥)…

• And the integral becomes:
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Monte Carlo integration

• So to approximate an integral over a complicated

function 𝑓(𝑥):

• Sample from 𝑞(𝑥),

• Calculate weights at samples:

• Normalize the weights:

• Calculate the weighted average:
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Monte Carlo pdf representation

• Represent 𝑝 𝑥 by a weighted

set of samples:

• …by sampling from 𝑞(𝑥)

• and calculate the correction weights:
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Monte Carlo pdf representation

• Note the different (but equivalent) Monte Carlo representations of the 

same pdf:
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Analytic representations of posteriors

• Monte Carlo samples: a mixture of weighted Dirac deltas

current input image current posterior
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Computing expectations by MC

• Assume we have a MC representation of 𝑝(𝑥)

• What is the expected value of 𝑥 under 𝑝 𝑥 ?
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This set is called “particles”
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Particle filters

• Recursive Bayes Filters

• Approximate the posterior by weighted samples – particles

• Instead of integration, sample and apply summation

• Originate from fields like:

• Statistical machine learning and pattern recognition

• Statistical mechanics

• Signal processing

• Econometrics
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Particle filters

• Go by names:

• Sequential Monte Carlo Methods

• Sequential Importance Sampling with Resampling

• We will consider the simplest particle filter called “the bootstrap 

particle filter”

• Despite simplicity, still widely used

• Introduced to computer vision in the paper from Isard and Blake1.

1Isard, M. and Blake, A. “CONDENSATION --conditional density propagation for visual tracking” IJCV, 29, 1, 5--28, (1998)
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Particle filters

• Recall the recursive Bayes filter equation

• Approximate the prior by MC

• The integral in the posterior vanishes:
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But we need to represent the posterior by MC samples as well.
Apply importance sampling! 
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Particle filters

• Sample 𝑁 samples from the proposal: 𝑥𝑘
(𝑗)

∼ 𝑞(𝑥)

• Using                                            , the weights further simplify into

• Note that 𝑞(𝑥) is a mixture model (dynamic model).

• This is the “Bootstrap particle filter”.
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The posterior distribution becomes:
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1. Draw N samples from

2. Move each sample by dynamic model:

3. Evaluate the weight of each sample:

• Normalize weights:

k

Resample

Bootstrap (SIR) particle filter
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• Will be considering the following example:

• A particle is state + weight:

• State: A rectangle

xH

yH
k

k

x

y

 
 
 

(i

(i)

)

,

k

k

k

k

xk

y

k

k

x

y

x
w

y

H

H

  
  
  
   
  
  
  
  
    

Bootstrap particle filter by example
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• Start with the posterior from the previous time-step.

• Recall, the posterior is a set of weighted samples.

image from k-1

Bootstrap particle filter recursion (step1)
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( )cdf p

-th particlei

Resampling

• How to draw samples from                                                     ?

• Weighted particle set is a discrete distribution!

• For example, ten particles:

• Draw M=5 samples: 
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(weight of each new particle is 1/5)
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image from k-1

▪ N new samples are drawn from the 

previous set.

▪ Some samples are repeated multiple 

times, while other are never selected.

Before resampling

Bootstrap particle filter recursion (step2)

34



image from k-1

After resampling

▪ N new samples are drawn from the 

previous set.

▪ Some samples are repeated multiple 

times, while other are never selected.

Bootstrap particle filter recursion (step2)
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▪ Apply the motion model 

to every particle:

▪ For each particle simulate its own

noise

Linear 
motion

Noise
term

image from k

Bootstrap particle filter recursion (step3)
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image from k

• For each state 𝑥𝑘
(𝑖)

obtain an observation 𝑦𝑘
(𝑖)

• Evaluate likelihood:

• Set the weight to

the likelihood value:

• For example, consider the states indexed by 5 and 90.

(i) (i)(y | x )k kp

(i) (i) (i)( | x )k kw p y=

Bootstrap particle filter recursion (step4)
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• Example of likelihood:

• Probability of observing a histogram 𝑦𝑘
(𝑖)

, 

assuming that the target is at 𝑥𝑘
(𝑖)

:

H S V

reference model:ℎ𝑟𝑒𝑓

Poor match

Good match

(i) (i)(y | x )k kp

1 2 2(i)

2
( dist ,h / )(i) ( ( )i)( | x ) e refky

k kp y
−

=

H S V

= color histogram

H S V

= color histogram

ቁ𝑑𝑖𝑠𝑡(𝑦𝑘
𝑖
, ℎ𝑟𝑒𝑓

e.g., Hellinger
distance

Bootstrap particle filter recursion (step4)
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• For each state 𝑥𝑘
(𝑖)

obtain an observation 𝑦𝑘
(𝑖)

• Evaluate likelihood:

• Set the weight to the 

likelihood:

(i) (i)(y | x )k kp

(i) (i) (i)( | x )k kw p y=

Before measurement update.

Bootstrap particle filter recursion (step4)

39



• For each state 𝑥𝑘
(𝑖)

obtain an observation 𝑦𝑘
(𝑖)

• Evaluate likelihood:

• Set the weight to

the likelihood:

(i) (i)(y | x )k kp

(i) (i) (i)( | x )k kw p y=

After updating.

Bootstrap particle filter recursion (step4)
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Bootstrap particle filter steps in a nutshell
Posterior from previous time-step

Step 1

Resample

Step 2

Predict particles

Step 3

Evaluate weights

Step 4

See J.D. Prince “Computer vision: models, learning and inference”, Section 19.5 41



Making sense of the estimated pdf

• Estimate the current state of the target from the pdf.

• Interpretation of the pdf depends on application.

• A common approach is to calculate the mean particle.

• The mean particle (expected value over pdf):
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Particle filter in action

The mean stateAll states in distribution

Video from: Kevin Smith’s ”SELECTED TOPICS IN COMPUTER VISION – 2D tracking” 43



Particle filter in action

Input image and the mean particle. Particle distribution. Only ellipse centers
are shown, the height represents weight.
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Effects of the visual model

• A simple histogram-based visual model (joint RGB)

• After a tracking iteration update the reference histogram ℎ𝑡 by 

the histogram ℎ𝐴 sampled from the estimated position.

Reference color
histogram

Calculate the 
Hellinger distance

Measure of presenceExtracted color
histogram

1 (1 )t A th hh  + = + − 0.05 = … adaptation constant
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Effects of the visual model

• A simple histogram-based visual model (joint RGB)

Reference color
histogram

Calculate the 
Hellinger distance

Measure of presence

Tracking fails 14 times
due to clutter.

Extracted color
histogram

Maybe accounting for the background would help….
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A simple background image

• CAUTION: Assumes a static camera.

• Many approaches exist, most popular are based on Mixture models e.g., [Stauffer and 

Grimson 1999]

• A simple background estimate by selecting random images and taking median intensity 

along each pixel.

Stauffer and Grimson, “Adaptive background mixture models for real-time tracking,” CVPR 1999.
Piccardi, “Background subtraction techniques: a review”, IEEE SMC2004

Input images Result
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Effects of the visual model

• Accounting for the background
current image

background image

Normalized 
Hellinger distance-based
measure

mask function

reference

Ratio between the 
number of visible and 
invisible pixels       . Measure of presence:

1 , ;(h )A k Bh h−

48

Kristan et al.,"Closed-world tracking of multiple 
interacting targets for indoor-sports applications". 
CVIU2009.



Effects of the visual model

• Constant adaptation may not be always appropriate

• Consider the following constant adaptation

Percentage of the new histogram
in the reference histogram when
using 𝛼 = 0.05.

1 (1 )t A th hh  + = + −

What does this mean for occlusion?
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Effects of the visual model

• Constant adaptation does not stop during occlusion!

• Require non-constant adaptation:

1(1 )k kk k kh hh   −= + −

Maximal allowed adaptation (Ω𝑚𝑎𝑥 = 0.05)

Low adaptation (𝛼𝑘 ≈ 0) High adaptation (𝛼𝑘 ≈ 0.05)

1 , ;(h )A k Bh h−
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Effects of the visual model

14 failures 1 failure

Not accounting for the background Accounting for the background

The background image
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Effects of the visual model

• Occlusion by a visually-similar object.
14 failures
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Color ambiguity

• The problem of the color ambiguity: Tracking hands

• Problem: The color likelihood function is ambiguous with respect to the 

location of the person’s hand.

• The mode stretches accross both hands, which usually causes a failure in 

tracking.

original image color likelihood

using the color-based
visual model (histogram)
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The local motion visual model

• Use the motion information.
original image optical flow

color likelihood motion likelihood combined likelihood

ambiguity resolved
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The local motion visual model

• Hand tracking revisited:

• The combined visual model significantly improves tracking in presence 

of occlusions.

color-based model combined model14 failures 2 failures

M. Kristan et al., "A Local-motion-based probabilistic model for visual tracking". Pattern Recognition, 2009.
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The “take home” message

1. Uncertainties pose major challenge in tracking.

2. Recursive Bayes filters deal naturally with these 

uncertainties.

3. World is linear and Gaussian: Kalman filter

4. Relaxing these assumptions: Particle filters
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The “take home” message

5. Take care when implementing: 

• Probabilistic visual model.

• Probabilistic dynamic model.

6. Many open challenges remain: 

initialization, drift, target dynamics, efficient schemes for 

multiple targets, visual models, occlusion, online 

appearence learning, etc.
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Next week we’ll talk about trainable trackers

• Please read a few slides from here on deep learning:

http://cs231n.stanford.edu/

• Module 2: Convolutional Neural Networks ->Convolutional Neural Networks: 

Architectures, Convolution / Pooling Layers 

• Great if you also have a look at Transformers:

• Eg., https://jalammar.github.io/illustrated-transformer/
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