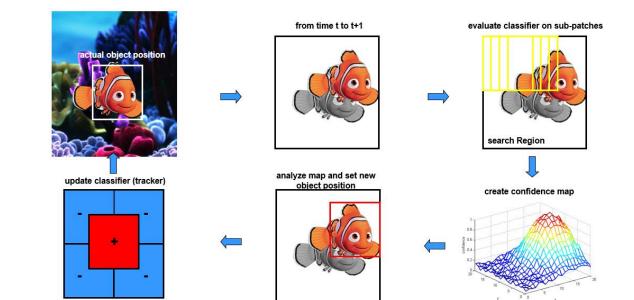
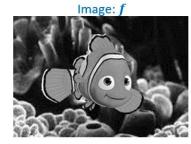
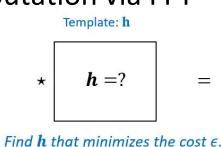
Previously at ACVM...

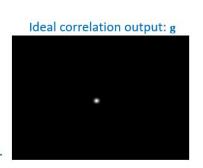
- Discriminative trackers
 - Adaboost
 - TMIL
 - Structured SVM



- Discriminative correlation filters
 - Linear classifiers (ridge regression learning)
 - Efficient computation via FFT







Advanced computer vision methods Tracking by Recursive Bayes Filters Part I: Introduction

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani

Classes of trackers

 A tracker can be roughly classified by considering the following two properties:

Property 1: Batch tracking vs. Online tracking

• How many images are considered to estimate the state at time-step t?

Property 2: Non Bayesian vs. Bayesian tracking

• How is the notion of the target state encoded?

Online vs Batch tracking

• Batch tracking: Can consider all frames before t and after t to infer the target position at time-step t.

Potentially robust, appropriate for offline systems

• Online tracking: Can consider only frames before t to infer position at t.

Potentially fast, appropriate for real-time systems

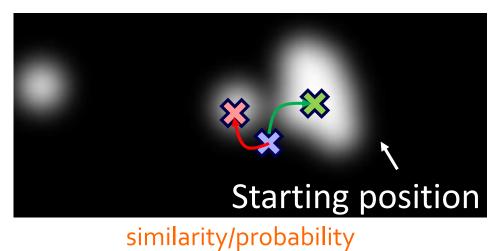
Non Bayesian vs Bayesian tracking

Question: "How is the information of the target state encoded?"

NON-BAYESIAN

- Local optimum
 - Gradient descent
 - Mean Shift
 - Greedy local search, etc.
- Fast convergence
- Single solution for the state value
 - But is it correct?

input image

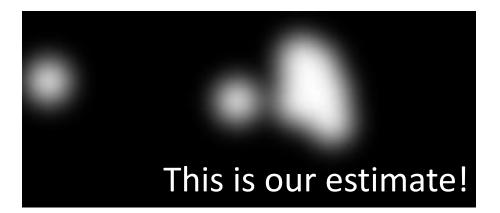


Non Bayesian vs Bayesian tracking

*Question: "*How is the notion of the target state encoded?"

BAYESIAN

- Assign a probability to each position of the target
- Relevant info is encoded in the pdf over the target state!
- Implicitly remembers multiple hypotheses of "location".
- Interpret the pdf when required
- Typically slower

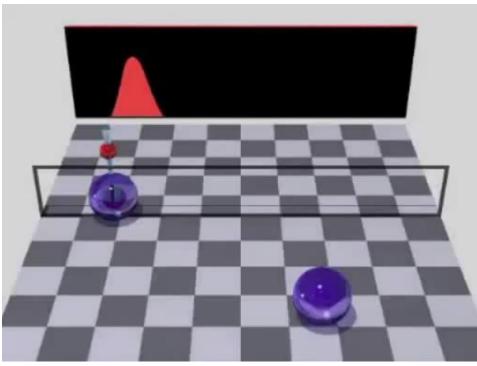


Non Bayesian vs Bayesian tracking

*Question: "*How is the notion of the target state encoded?"

BAYESIAN

- The pdf changes with time an entire pdf is tracked
- Example of a pdf:
 - $p(Ball|x_k)$,
 - Expected value:
 - $\hat{x} = \langle x_k \rangle_{p(Ball|x_k)}$



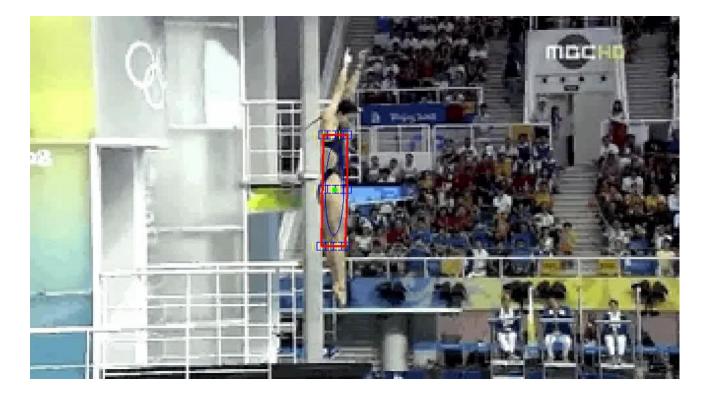
Examples: Online tracking

- Non Bayesian
 - Mean Shift

Comaniciu et al. "Kernel-Based Object Tracking", IEEE TPAMI., 2003

- Fully Bayesian
 - Bayes recursive filters

Isard et al., "CONDENSATION -- conditional density propagation for visual tracking" IJCV, 1998



appearance

- Level of detail
- Occlusion by visually similar objects
- Clutter
- Target motion
- Interacting targets

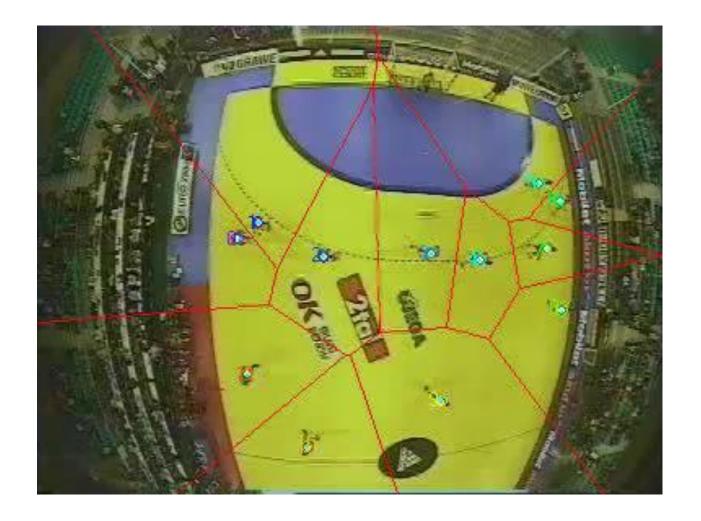
- Change in appearance
- 뵺 Level of detail
- Occlusion by visually similar objects
- Clutter
- Target motion
- Interacting targets

- Change in appearance
- Level of detail
- Occlusion by visually similar objects
- Clutter
- Target motion
- Interacting targets

- Change in appearance
- Level of detail
- Occlusion by visually similar objects
- 🔶 Clutter
- Target motion
- Interacting targets

Z. Khan, T. Balch, and F. Dellaert, "MCMC-Based Particle Filtering for Tracking a Variable Number of Interacting Targets" IEEE TPAMI, 2005.

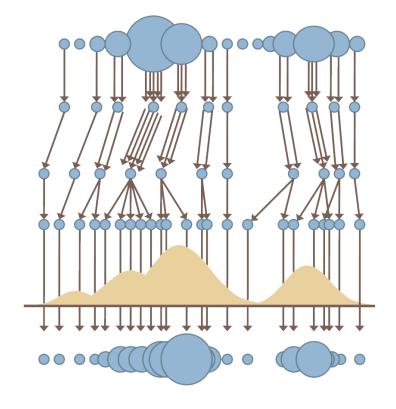
- Change in appearance
- Level of detail
- Occlusion by visually similar objects
- Clutter
- Target motion
- Interacting targets



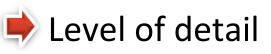
- Change in appearance
- Level of detail
- Occlusion by visually similar objects
- Clutter
- Target motion

Kristan et al., "Closed-world tracking of multiple interacting targets for indoor-sports applications" CVIU 2009.

These issues can be addressed efficiently using probabilistic approaches!



appearance



Occlusion by visually

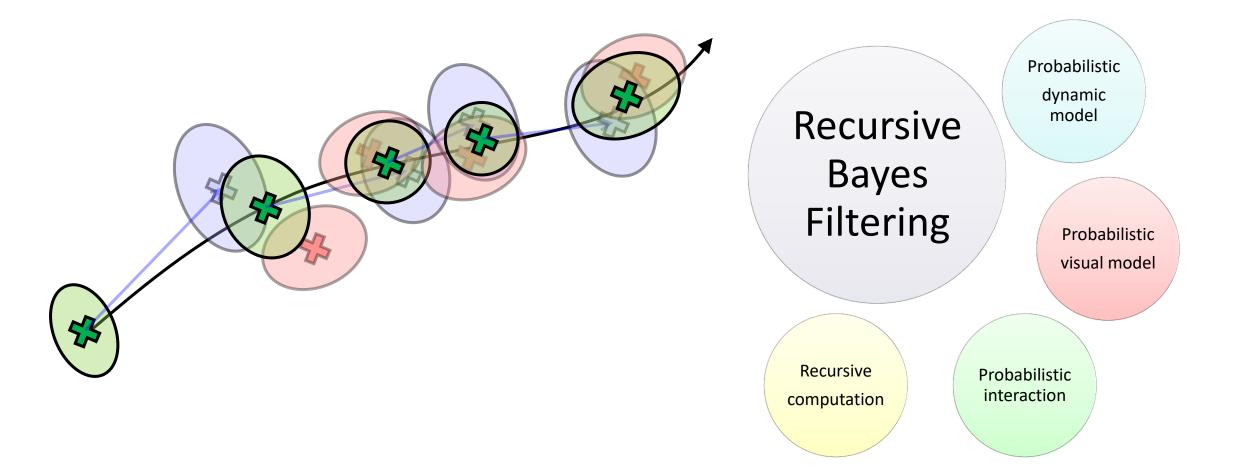
similar objects

Clutter

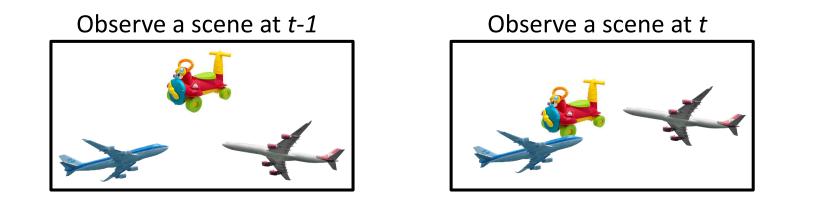
Target motion

Recursive Bayes Filters

• A principled way to address uncertainty in visual tracking



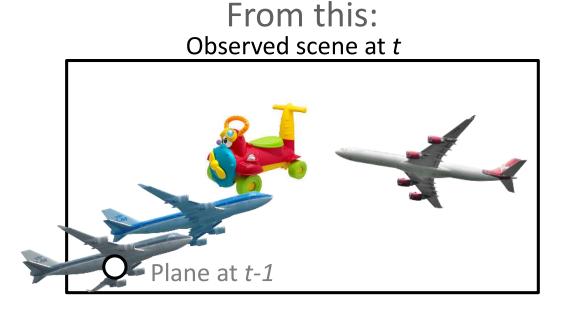
Consider tracking an airplane as an example



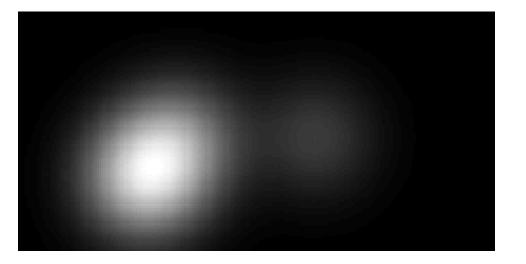
Observed scene at *t* Plane at *t-1*

Bayesian tracking as a state estimation problem

- State at time $t: x_t$ (e.g., position)
- Measurement at *t*: *y*_{*t*} (e.g., location obtained by detector)
- Approach: Given all we know about the target and the measurements we take, what is the probability that a target is at state x_t ?

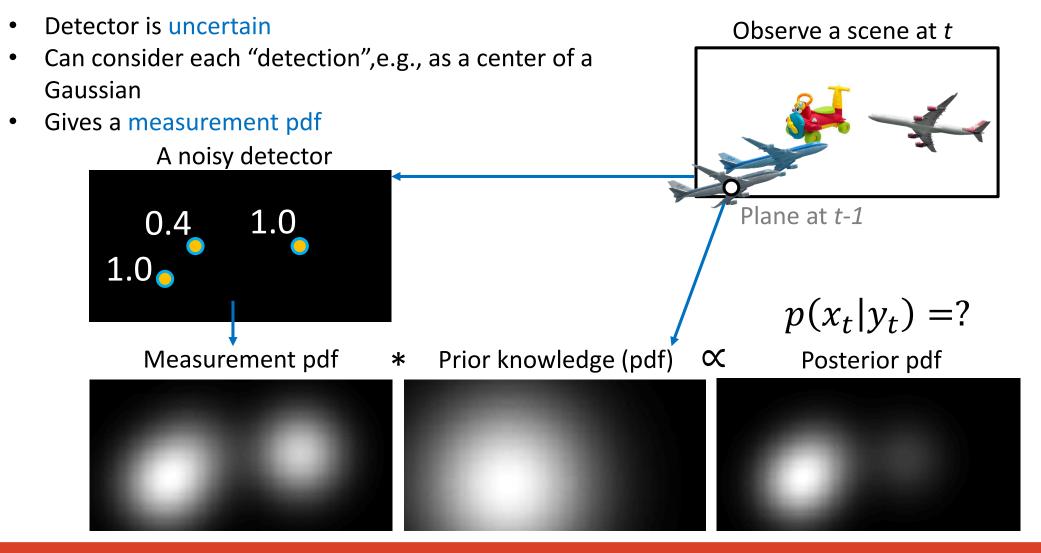


Infer this:
$$p(x_t|y_t) = ?$$



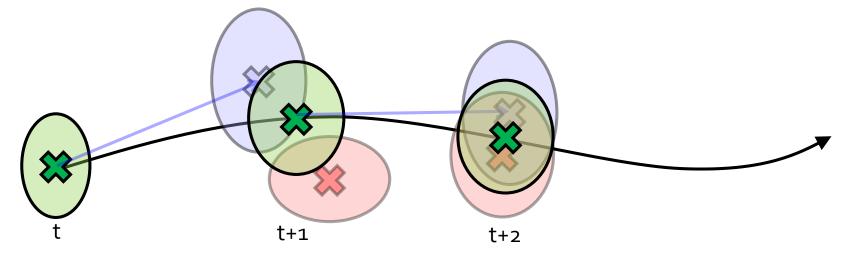
What is a Bayes Filter?

• Key idea 1: Reason about the target states in terms of pdfs

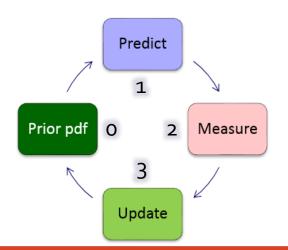


What is a *Recursive* Bayes Filter?

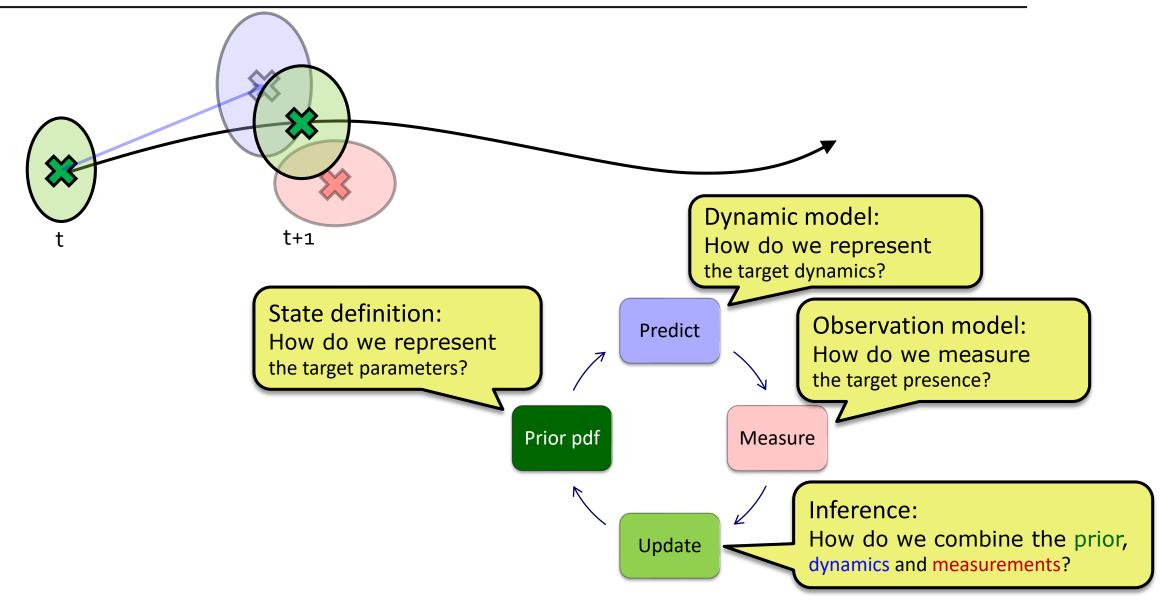
• Key idea 1: Encode beliefs about states in a pdf



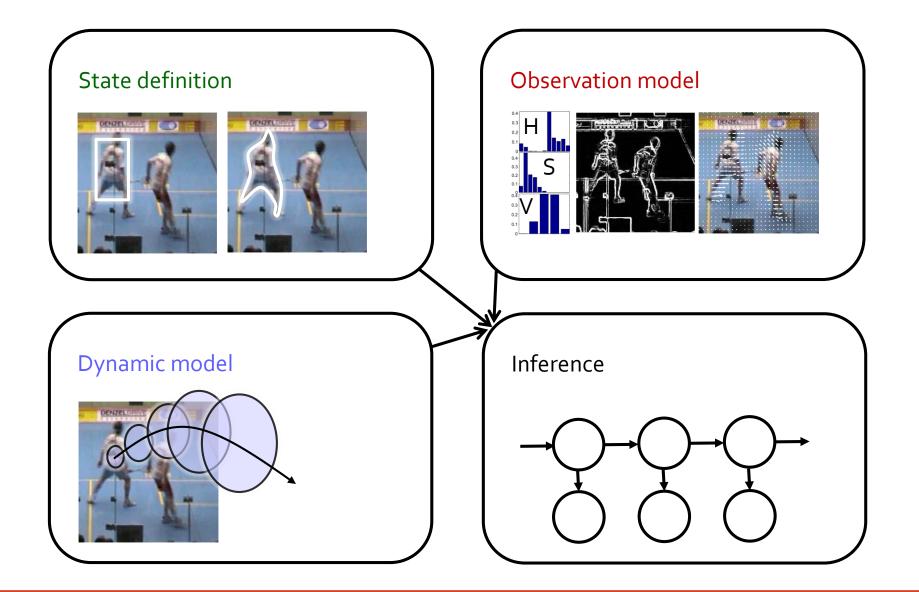
- Key idea 2: Recursively estimate the posterior
 - Predict from *uncertain* motion model
 - Measure from uncertain sensor
 - Update distribution



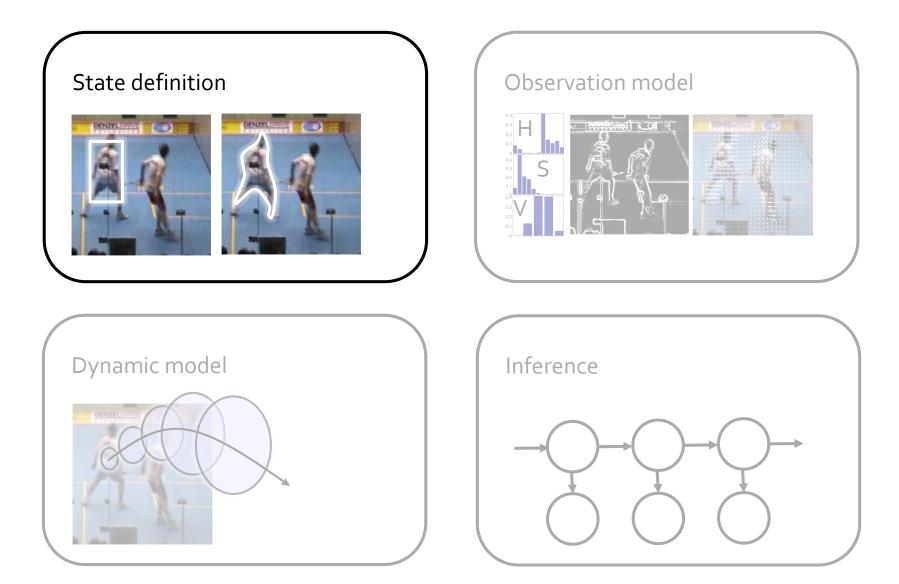
Recursive Bayes Filter: Key ingredients



Key Ingredients



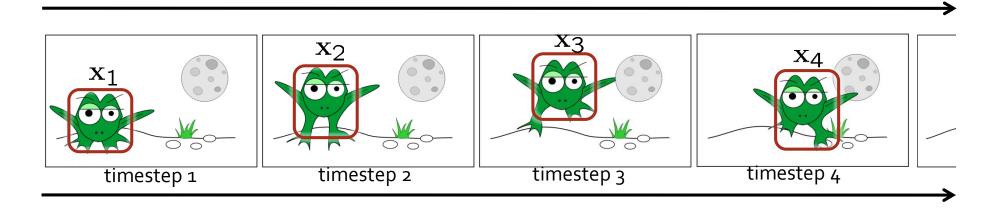
Key Ingredients



What is a state of the target?

- Target properties at a time-step
- Encodes parameters (which we want to estimate)

$$\mathbf{x}_{1:N} = {\mathbf{x}_1, \dots, \mathbf{x}_{k-1}, \mathbf{x}_k, \mathbf{x}_{k-1}, \dots, \mathbf{x}_N} = {\mathbf{x}_k}_{1:N}$$



• Parametric form of the state x_k depends on the model by which we describe the target.

How do we define a state?

- Define the state by the target "free" parameters.
- Examples:
 - Location

$$\mathbf{x}_k = [x, y]$$

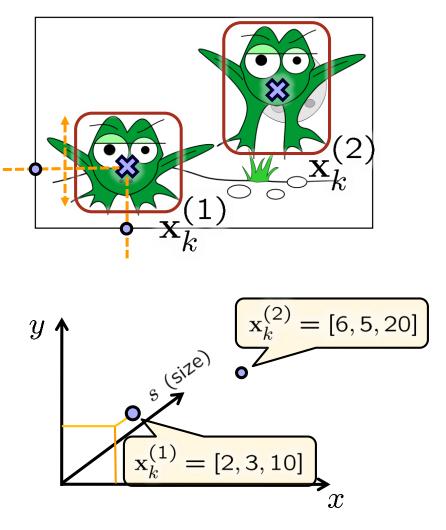
• Location + size

$$\mathbf{x}_k = [x, y, s]$$

• Location + velocity

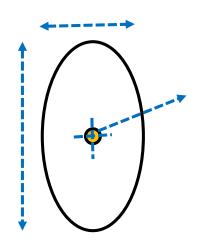
 $\mathbf{x}_k = [x, y, \dot{x}, \dot{y}]$

• Multiple objects (joint state) $\mathbf{x}_k = \{\mathbf{x}_k^{(1)}, \mathbf{x}_k^{(2)}\}$



State definition: Example 1

- Axis-aligned blobs (bounding box, ellipse)
 - center
 - width + height
 - velocity
 - 6D $\mathbf{x}_k = [x, y, \dot{x}, \dot{y}, H_x, H_y]$

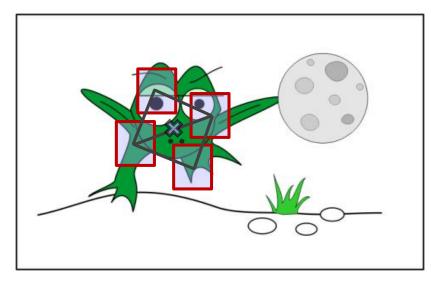


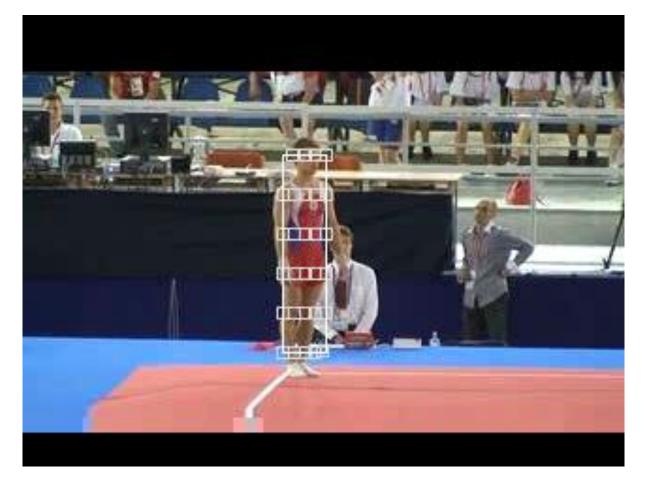
Kristan et al., "A Local-motion-based probabilistic model for visual tracking". *Pattern Recognition*, 2009.

State definition: Example 2

- Part-based models, Constellation models
 - Center, velocity
 - Relative part locations
 - Varying number of parts

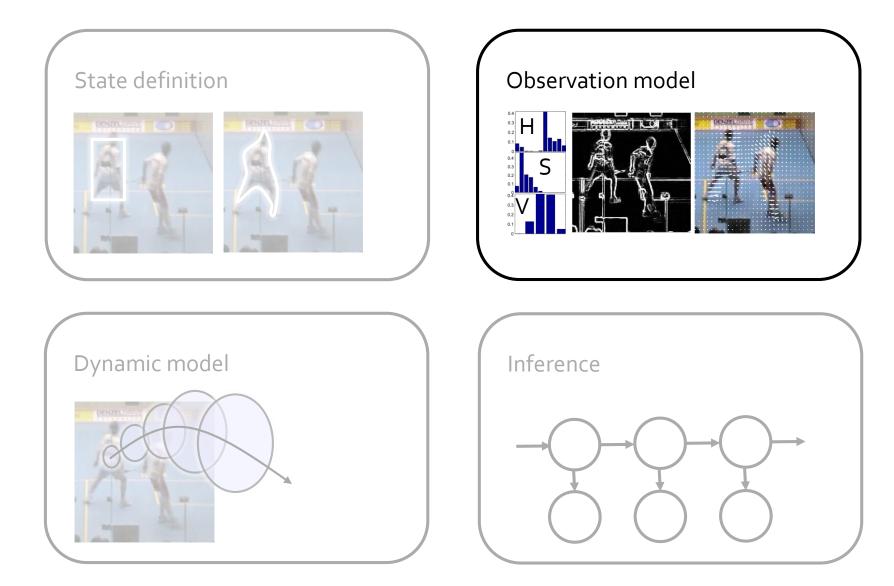
 $\mathbf{x}_{k} = [x_{c}, y_{c}, \dot{x}_{c}, \dot{y}_{c}, \mathbf{x}_{k}^{(1)}, \mathbf{v}_{k}^{(1)}, \dots, \mathbf{x}_{k}^{(N_{k})}, \mathbf{v}_{k}^{(N_{k})}]$





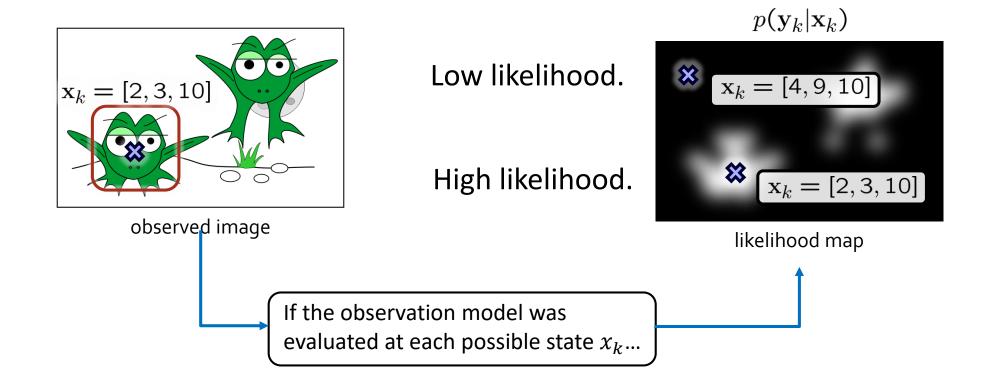
Čehovin, Kristan and Leonardis, "An adaptive coupled-layer visual model for robust visual tracking", TPAMI2013

Key Ingredients



What is the observation model?

- Transforms measurement into a probability
- The likelihood of observing y_k assuming the target is located at state x_k : $p(\mathbf{y}_k | \mathbf{x}_k)$



Observation model

 Choose a visual model (e.g., histograms, HOG, template, ...)

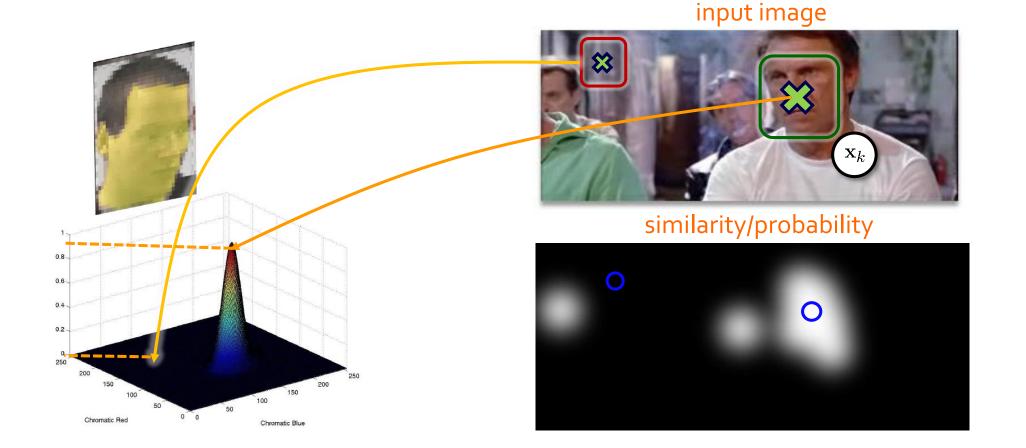
2. Define similarity function with the visual model

Define a function that maps similarity to probability
 (i.e., zero similarity -> zero probability and vice versa)

Observation model: Example 1

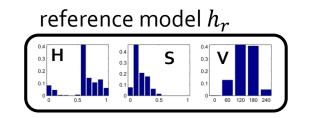
- Skin color sampled from a region
 - clusters in chromatic space model by a Gaussian

$$p(\mathbf{y}_k \mid x_k) \propto \exp(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}))$$



Observation model: Example 2

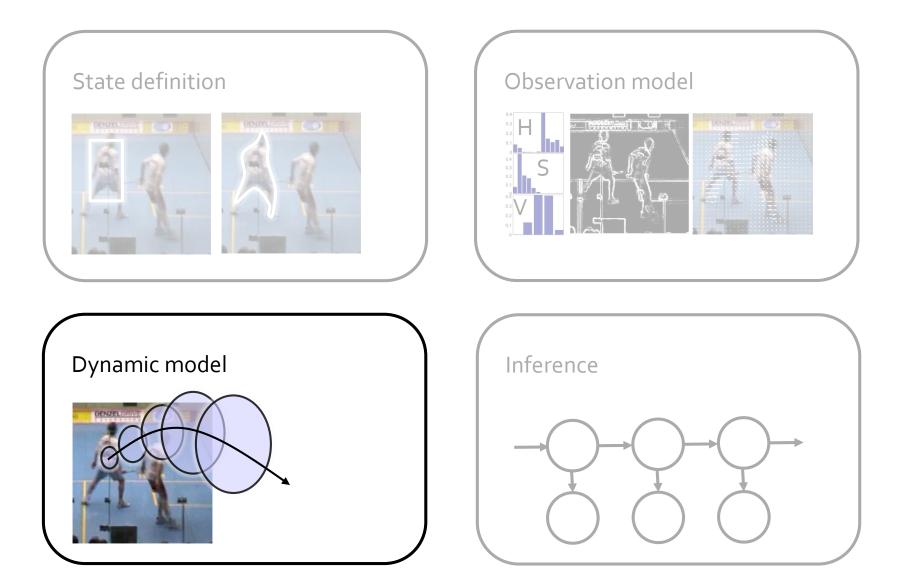
- Histograms
 - Color histograms
 - Hellinger distance between reference h_r and sampled histogram h_s : $d_{Hell}(h_r, h_s)$



sampled model
$$h_s$$

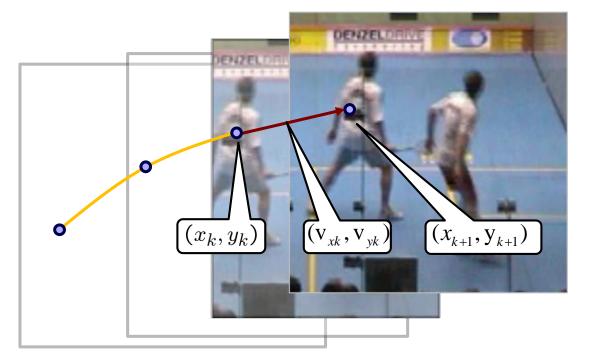
 $f = \int_{0}^{4} \int_{0}^{4} \int_{0}^{4} \int_{0}^{4} \int_{0}^{5} \int_{0}^{4} \int_{0}^{4}$

Key Ingredients



What is a dynamic model?

• Predicts the target state from its previous estimate.



$$x_{k+1} = x_k + v_{xk}\Delta t$$
$$y_{k+1} = y_k + v_{yk}\Delta t$$

- This is an example of a constant-velocity model
- Assumption: velocity at *k*+1 is equal to velocity at *k*.

A constant velocity model

• 1D problem, but 2D state space with position and velocity

$$\mathbf{x} = \begin{bmatrix} x \\ \dot{x} \end{bmatrix} \longrightarrow \dot{\mathbf{x}} = F\mathbf{x} \qquad F = ?$$

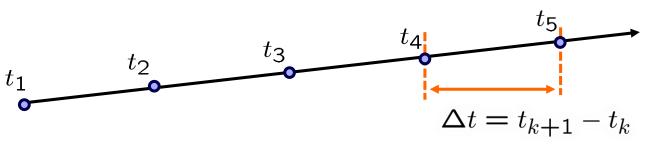
• Velocity does not change:

$$\dot{\mathbf{x}} = F\mathbf{x}$$

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} \mathbf{?} \\ \mathbf{?} \\ \dot{x} \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix}$$

From continuous to discrete

• A continuous motion is sampled at equally spaced time-steps (spacing Δt): $\dot{\mathbf{x}} = F\mathbf{x}$



• Solution according to Stengel (p.84)

$$\mathbf{x}(t_k) = \mathbf{\Phi}(\Delta t) \mathbf{x}(t_{k-1})$$
$$\mathbf{\Phi}(\Delta t) = \mathbf{e}^{F\Delta t} = I + F\Delta t + \frac{1}{2!}F^2\Delta t^2 + \frac{1}{3!}F^3\Delta t^3 + \cdots$$

Robert F. Stengel, Optimal Control and Estimation, Dover Books on Mathematics, 1994

From continuous to discrete

• For the constant-velocity model:

$$\dot{\mathbf{x}} = F\mathbf{x} \qquad F = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Matlab symbolic toolbox: >> syms T >> F = [0 1; 0 0] >> Fi = expm(F*T)

Compute using your favorite symbolic toolbox:

$$\Phi(\Delta t) = e^{F\Delta t}$$
$$\Phi(\Delta t) = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix}$$

Python symbolic toolbox:

>> import sympy as sp

>> from sympy.interactive.printing import init_printing
>> init_printing(use_unicode=False, wrap_line=False)

T = sp.symbols(**'T'**) >> F = sp.Matrix([[0, 1],[0, 0]]) >> Fi = sp.exp(F*T)

Discrete constant velocity model

• See if the derived CV model makes any sense:

$$\mathbf{x}_{k} = \mathbf{\Phi}(\Delta t) \mathbf{x}_{k-1} , \qquad \mathbf{\Phi}(\Delta t) = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} , \qquad \mathbf{x}_{k} = \begin{bmatrix} x_{k} \\ \dot{x}_{k} \end{bmatrix}$$

$$\underbrace{\mathbf{x}_{k-1}}_{\Delta t} \mathbf{x}_{k} = \begin{bmatrix} x_{k-1} \\ \dot{x}_{k} \end{bmatrix}$$

$$\begin{bmatrix} x_{k-1} \\ \Delta t \end{bmatrix} \begin{bmatrix} 1 \\ \Delta t \end{bmatrix} \begin{bmatrix} x_{k-1} \\ \dot{x}_{k-1} \end{bmatrix} \qquad x_{k} = x_{k-1} + \dot{x}_{k-1} \Delta t$$

$$\begin{bmatrix} x_k \\ \dot{x}_k \end{bmatrix} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{k-1} \\ \dot{x}_{k-1} \end{bmatrix} \xrightarrow{k_{k-1}} \dot{x}_k = \dot{x}_{k-1} + \dot{x}_{k-1} \Delta t$$
$$\dot{x}_k = \dot{x}_{k-1}$$

But constant velocity is not a very realistic assumption...

A nearly-constant-velocity model

• Assume that acceleration is not zero, but is noisy:

$$\ddot{x} = w$$

$$\mathbf{x} = \begin{bmatrix} x \\ \dot{x} \end{bmatrix} \qquad \dot{\mathbf{x}} = \begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} \mathbf{?} \end{bmatrix} w$$

A discrete counterpart

• Solution of $\dot{\mathbf{x}} = F\mathbf{x} + Lw$ according to Stengel (p.84)

$$\mathbf{x}_{k} = \mathbf{\Phi}(\Delta t)\mathbf{x}_{k-1} + W_{k-1}$$
, $\mathbf{\Phi}(\Delta t) = e^{F\Delta t}$ (deterministic)

$$W_{k-1}$$
 is a random variable: $W_{k-1} = \int_{t_{k-1}}^{t_k} \Phi(\tau) \operatorname{Lw}(\tau) d\tau$

Governed by a pdf and specified by the covariance matrix:

$$Q_{k-1} = \int_0^{\Delta t} (\Phi(\xi) \mathbf{L}) \mathbf{q}_c (\Phi(\xi) \mathbf{L})^T d\xi$$

Might want to apply Matlab/Python/Mathematica to solve for Q_{k-1} ...

Robert F. Stengel, Optimal Control and Estimation, Dover Books on Mathematics, 1994

The covariance **Q** of a NCV

• Recall:

$$\mathbf{\Phi}(\Delta t) = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \quad \dot{\mathbf{x}} = \begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} W$$

$$Q_{k-1} = \int_0^{\Delta t} (\Phi(\xi) \mathbf{L}) \mathbf{q}_c (\Phi(\xi) \mathbf{L})^T d\xi \qquad Q = q \begin{vmatrix} \frac{1}{3} \Delta t^3 & \frac{1}{2} \Delta t^2 \\ \frac{1}{2} \Delta t^2 & \Delta t \end{vmatrix}$$

Matlab symbolic toolbox: >>syms T q >> Fi = [1 T;0 1] >> L=[0 ;1] >> Q=int((Fi*L)*q*(Fi*L)',T,0,T) Python symbolic toolbox: >> import sympy as sp >> T, q = sp.symbols('T q') >> Fi = sp.Matrix([[1, T],[0, 1]]) >> L = sp.Matrix([[0], [1]]) >>Q = sp.integrate((Fi*L)*q*(Fi*L).T, (T, 0, T))

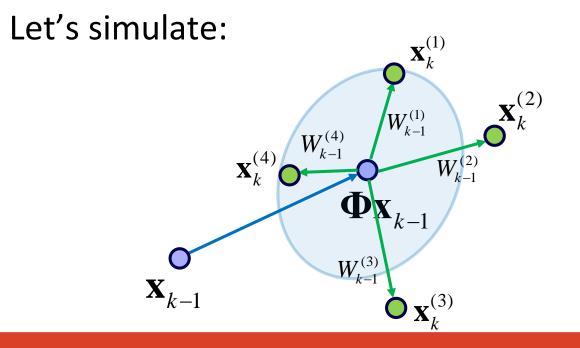
The nearly-constant-velocity model

• We are done: $\mathbf{x}_k = \mathbf{\Phi} \mathbf{x}_{k-1} + W_{k-1}$

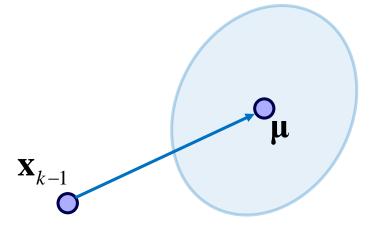
$$\mathbf{\Phi} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix}$$

$$Q = q \begin{bmatrix} \frac{1}{3}\Delta t^3 & \frac{1}{2}\Delta t^2 \\ \frac{1}{2}\Delta t^2 & \Delta t \end{bmatrix}$$

 $W_{k-1} \sim G(\mu = 0, Q)$



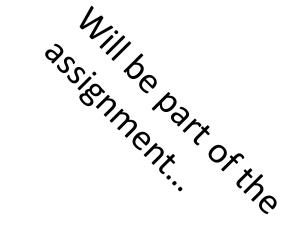
Probabilistic model: $p(\mathbf{x}_k | \mathbf{x}_{k-1}) = G(\mathbf{\mu} = \Phi \mathbf{x}_{k-1}, \mathbf{Q})$



It is easy to extend to 2D or higher

- A 2D NCV example:
 - If you like compact derivation...

$$\mathbf{x} = \begin{bmatrix} x \\ \dot{x} \\ y \\ \dot{y} \end{bmatrix} \qquad \dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ y \\ \dot{y} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$



- Or, more common and simpler (but equivalent):
 - Two separate instances of the NCV model that we derived in previous slides (one for x and one for y).

Random walk dynamic model

• Brownian motion – velocity is noise!

$$\mathbf{x} = \begin{bmatrix} x \\ \dot{x} \end{bmatrix} \quad \dot{x} = w$$

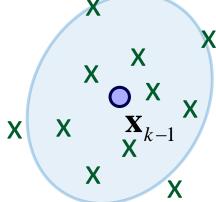
Step 1: Write the equation in a form of $\dot{x} = Fx + Lw$

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} w$$

Apply the same (Matlab/Python) derivation as in previous slides:

$$\mathbf{x}_k = \mathbf{x}_{k-1} + W_{k-1}$$

$$p(\mathbf{x}_k \mid \mathbf{x}_{k-1}) = \mathbf{G}(\boldsymbol{\mu} = \mathbf{x}_{k-1}, \mathbf{Q})$$

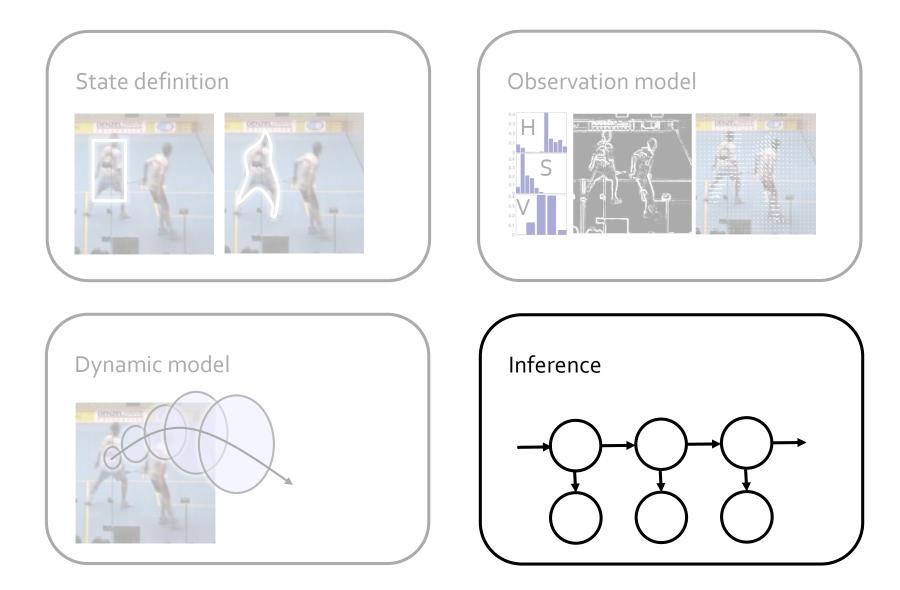


Widely used dynamic models

- Velocity is non-correlated:
 - Velocity modelled by a white noise sequence
 - Random Walk model (RW), Brownian motion
- Acceleration non-correlated:
 - Acceleration modelled by a white noise sequence
 - Nearly constant velocity (NCV)
- Derivative of acceleration (jerk) non-correlated:
 - Jerk modelled by a white noise sequence
 - Nearly constant acceleration (NCA)

X. Rong Li, V. Jilkov P., Survey of maneuvering target tracking: Dynamic models, IEEE TAES 2003

Key Ingredients



Probabilistic view

• Given a sequence of observations $\mathbf{y}_{1:k} = \{\mathbf{y}_i\}_{i=1:k}$ (think about the observation in most abstract way – an image)

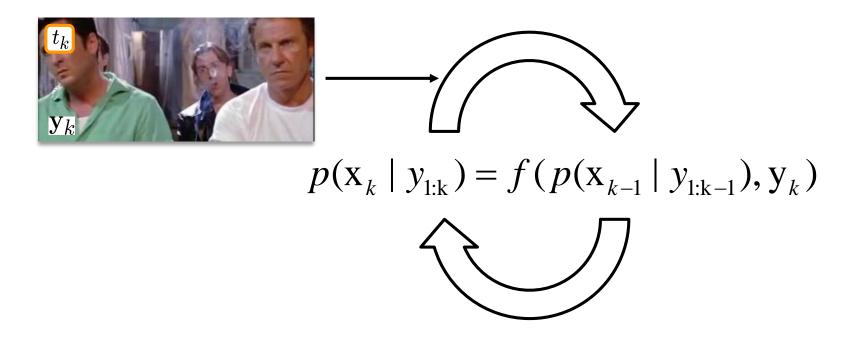
• ...want to find the density over the current state \mathbf{x}_k

 $p(\mathbf{x}_k | \mathbf{y}_{1:k})$

Using the Bayesian terminology: The posterior over the x_k

Towards Recursive Bayes Filter

• The goal is to rewrite the posterior in the current time-step k as a function of the posterior from the previous time-step k-1:



Towards Recursive Bayes Filter

$$p(\mathbf{x}_{k} \mid y_{1:k}) = \frac{p(y_{k} \mid \mathbf{x}_{k}, y_{1:k-1}) p(\mathbf{x}_{k} \mid y_{1:k-1})}{p(y_{k} \mid y_{1:k-1})}$$

Assumption 1: Current measurement is conditionally independent from all previous measurements given x_k .

$$p(y_k \mid \mathbf{x}_k, y_{1:k-1}) \equiv p(y_k \mid \mathbf{x}_k)$$

$$p(\mathbf{x}_{k} | y_{1:k}) = \frac{p(y_{k} | \mathbf{x}_{k}) p(\mathbf{x}_{k} | y_{1:k-1})}{p(y_{k} | y_{1:k-1})}$$

Towards Recursive Bayes Filter

• Expand the density $p(x_k | y_{1:k-1})$:

$$p(\mathbf{x}_{k} \mid y_{1:k-1}) = \int p(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, y_{1:k-1}) p(\mathbf{x}_{k-1} \mid y_{1:k-1}) d\mathbf{x}_{k-1}$$

 Assumption 2: Current state is conditionally independent from all previous measurements given x_{k-1}.

 $p(x_k | x_{k-1}, y_{1:k-1}) \equiv p(x_k | x_{k-1})$

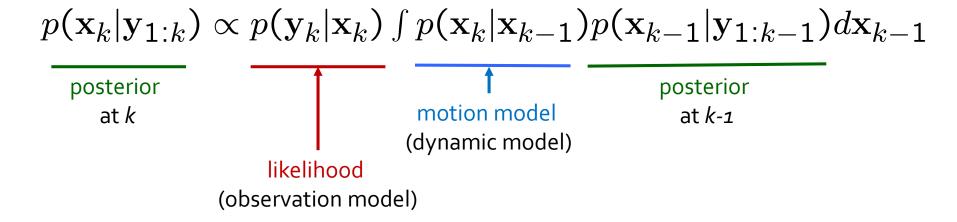
$$p(\mathbf{x}_{k} \mid y_{1:k-1}) = \int p(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}) p(\mathbf{x}_{k-1} \mid y_{1:k-1}) d\mathbf{x}_{k-1}$$

The Bayes Recursive Filter

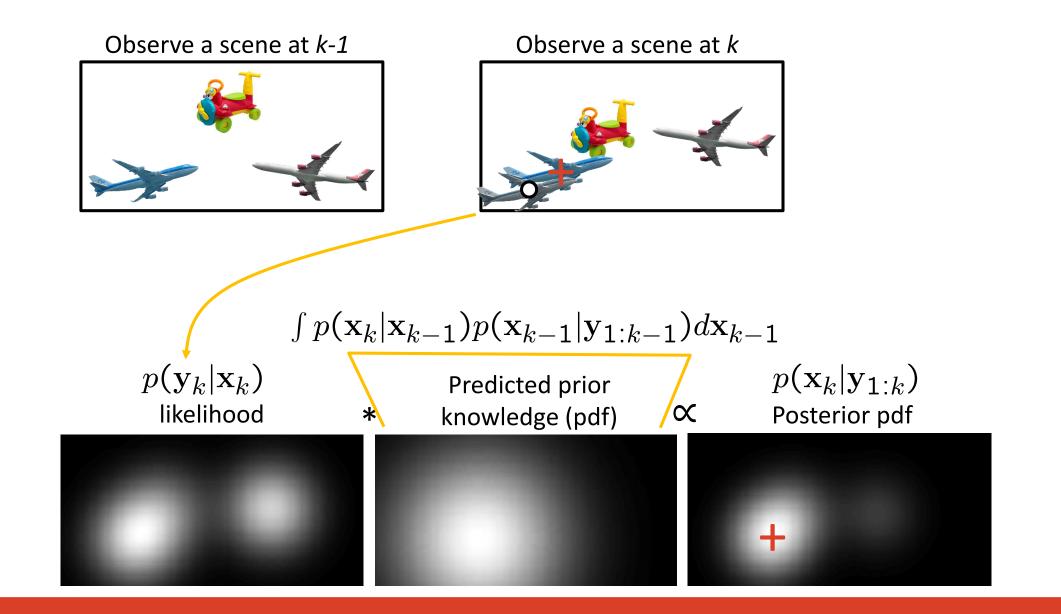
• Putting it all together:

$$p(\mathbf{x}_{k} \mid y_{1:k}) = \frac{p(y_{k} \mid \mathbf{x}_{k}) \int p(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}) p(\mathbf{x}_{k-1} \mid y_{1:k-1}) d\mathbf{x}_{k-1}}{p(y_{k} \mid y_{1:k-1})}$$

• The denominator does not depend on the state:

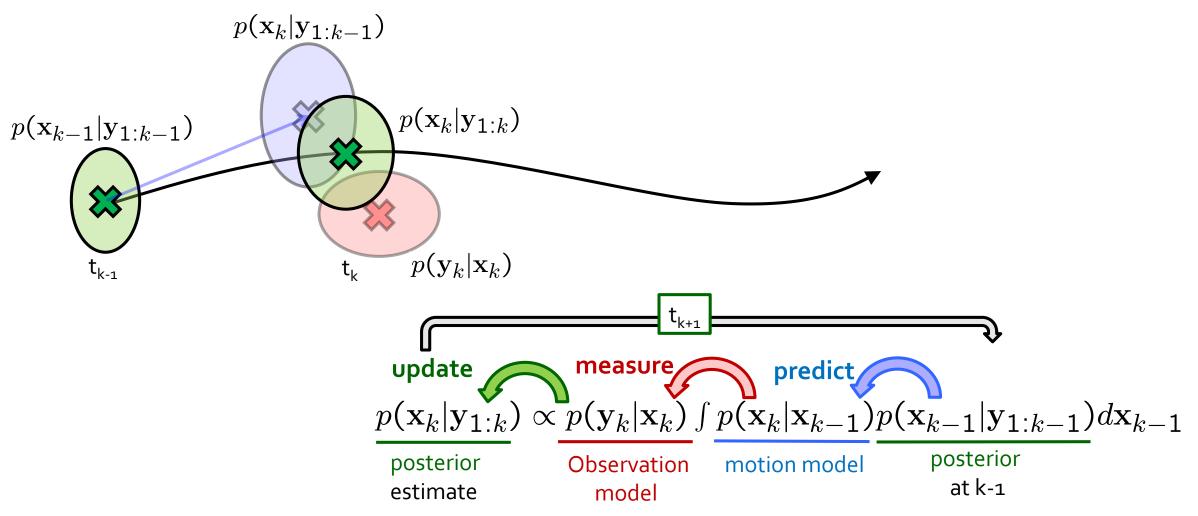


Recall the airplane tracking example



Recursive Bayesian Filter

• At each time-step estimate the posterior:



Acknowledgement

- Some images and parts of slides have been taken from the following talks:
 - Kevin Smith's "SELECTED TOPICS IN COMPUTER VISION 2D tracking"