
Previously at ACVM…

• Discriminative trackers

• Adaboost

• TMIL

• Structured SVM

• Discriminative correlation filters

• Linear classifiers (ridge regression learning)

• Efficient computation via FFT
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Classes of trackers

• A tracker can be roughly classified by considering the following 

two properties:

Property 1: Batch tracking vs. Online tracking

• How many images are considered to estimate the state at time-step t ? 

Property 2: Non Bayesian vs. Bayesian tracking

• How is the notion of the target state encoded?



Online vs Batch tracking

• Batch tracking: Can consider all frames before 𝑡 and after 𝑡 to infer the 

target position at time-step 𝑡.

• Online tracking: Can consider only frames before 𝑡 to infer position at 𝑡.

Potentially fast, appropriate for real-time systems

Potentially robust, appropriate for offline systems



Non Bayesian vs Bayesian tracking

Question: “How is the information of the target state encoded?”

• Local optimum

• Gradient descent

• Mean Shift

• Greedy local search, etc.

• Fast convergence

• Single solution for the state value

• But is it correct?

NON-BAYESIAN

similarity/probability

input image

Starting position



Non Bayesian vs Bayesian tracking

Question: “How is the notion of the target state encoded?”

• Assign a probability to each position of the target

• Relevant info is encoded in the pdf over the target state!

• Implicitly remembers multiple hypotheses of “location”.

• Interpret the pdf when required

• Typically slower

BAYESIAN

This is our estimate!



Non Bayesian vs Bayesian tracking

Question: “How is the notion of the target state encoded?”

• The pdf changes with time – an entire pdf is tracked

• Example of a pdf: 

• 𝑝(𝐵𝑎𝑙𝑙|𝑥𝑘),

• Expected value:

• ො𝑥 = 𝑥𝑘 𝑝(𝐵𝑎𝑙𝑙|𝑥𝑘)

BAYESIAN



Examples: Online tracking

• Non Bayesian

• Mean Shift

• Fully Bayesian

• Bayes recursive filters

Comaniciu et al. “Kernel-Based Object Tracking”, 
IEEE TPAMI., 2003 

Isard et al., “CONDENSATION -- conditional density 
propagation for visual tracking” IJCV, 1998



Practical challenges

• Change in 

appearance

• Level of detail

• Occlusion by visually 

similar objects

• Clutter

• Target motion

• Interacting targets

Čehovin, Kristan and Leonardis,“An adaptive coupled-layer visual  model for robust visual tracking”, ICCV2011



Practical challenges

Kristan et. al,"Closed-world tracking of multiple interacting targets for indoor-sports applications“, CVIU2009

• Change in 

appearance

• Level of detail

• Occlusion by visually 

similar objects

• Clutter

• Target motion

• Interacting targets



Practical challenges

M. Kristan et al., "A Local-motion-based probabilistic model for visual tracking“, Pattern Recognition, 2009

• Change in 

appearance

• Level of detail

• Occlusion by visually 

similar objects

• Clutter

• Target motion

• Interacting targets



Practical challenges

Z. Khan, T. Balch, and F. Dellaert, “MCMC-Based Particle Filtering for Tracking a Variable Number of Interacting Targets”
IEEE TPAMI,2005.

• Change in 

appearance

• Level of detail

• Occlusion by visually 

similar objects

• Clutter

• Target motion

• Interacting targets



Practical challenges

Isard, M. and Blake, A. “CONDENSATION --conditional density propagation for visual tracking”, IJCV1998

• Change in 

appearance

• Level of detail

• Occlusion by visually 

similar objects

• Clutter

• Target motion

• Interacting targets



Practical challenges

Kristan et al.,"Closed-world tracking of multiple interacting targets for indoor-sports applications"CVIU 2009.

• Change in 

appearance

• Level of detail

• Occlusion by visually 

similar objects

• Clutter

• Target motion

• Interacting targets



Practical challenges

These issues can be addressed efficiently
using probabilistic approaches!

• Change in 

appearance

• Level of detail

• Occlusion by visually 

similar objects

• Clutter

• Target motion

• Interacting targets



Recursive Bayes Filters

• A principled way to address uncertainty in visual tracking

Recursive
Bayes

Filtering

Probabilistic

dynamic 
model

Probabilistic 
interaction

Recursive 

computation

Probabilistic

visual model



Consider tracking an airplane as an example

Observe a scene at tObserve a scene at t-1

Observed scene at t

Plane at t-1



Bayesian tracking as a state estimation problem

• State at time 𝑡: 𝑥𝑡 (e.g., position)

• Measurement at 𝑡: 𝑦𝑡 (e.g., location obtained by detector)

• Approach: Given all we know about the target and the measurements we 

take, what is the probability that a target is at state 𝑥𝑡?

𝑝 𝑥𝑡 𝑦𝑡 =?From this: Infer this:
Observed scene at t

Plane at t-1



What is a Bayes Filter?

• Key idea 1: Reason about the target states in terms of pdfs

• Detector is uncertain
• Can consider each “detection”,e.g., as a center of a 

Gaussian
• Gives a measurement pdf

Observe a scene at t

A noisy detector

1.00.4
1.0

Measurement pdf

Plane at t-1

Posterior pdf* ∝
𝑝 𝑥𝑡 𝑦𝑡 =?

Prior knowledge (pdf)



What is a Recursive Bayes Filter?

• Key idea 1: Encode beliefs about states in a pdf

• Key idea 2: Recursively estimate the posterior

• Predict from uncertain motion model

• Measure from uncertain sensor

• Update distribution

t t+1 t+2

0

1

2

3



Recursive Bayes Filter: Key ingredients

Predict

Measure

Update

Prior pdf

State definition:
How do we represent
the target parameters?

Dynamic model:
How do we represent
the target dynamics?

Observation model:
How do we measure
the target presence?

Inference:
How do we combine the prior,
dynamics and measurements?

t t+1



Key Ingredients

State definition Observation model

Dynamic model Inference

H

S

V



Key Ingredients

State definition Observation model

Dynamic model Inference

H

S

V



What is a state of the target?

• Target properties at a time-step

• Encodes parameters (which we want to estimate)

• Parametric form of the state  𝒙𝑘 depends on the model by which we 

describe the target.

timestep 1 timestep 2 timestep 3 timestep 4



How do we define a state?

• Define the state by the target “free” parameters.

• Examples:

• Location

• Location + size

• Location + velocity

• Multiple objects (joint state)



• Axis-aligned blobs (bounding box, ellipse)

• center

• width + height

• velocity

State definition: Example 1

Kristan et al., "A Local-motion-based probabilistic model for visual tracking". Pattern Recognition, 2009.
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State definition: Example 2

• Part-based models, Constellation models

• Center, velocity

• Relative part locations

• Varying number of parts

Čehovin, Kristan and Leonardis,“An adaptive coupled-layer visual model for robust visual tracking”, TPAMI2013



Key Ingredients

State definition Observation model

Dynamic model Inference

H

S

V



What is the observation model?

• Transforms measurement into a probability

• The likelihood of observing 𝑦𝑘 assuming the target is located at 

state 𝑥𝑘:

observed image
likelihood map

If the observation model was 
evaluated at each possible state 𝑥𝑘…

High likelihood.

Low likelihood.



Observation model

1. Choose a visual model

(e.g., histograms, HOG, template, …)

2. Define similarity function with the visual model

3. Define a function that maps similarity to probability

(i.e., zero similarity -> zero probability and vice versa)



Observation model: Example 1

• Skin color sampled from a region

• clusters in chromatic space – model by a Gaussian

similarity/probability

input image

11
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Observation model: Example 2

• Histograms

• Color histograms

• Hellinger distance between reference ℎ𝑟 and sampled histogram ℎ𝑠: 𝑑𝐻𝑒𝑙𝑙(ℎ𝑟 , ℎ𝑠)

H S V

reference model ℎ𝑟

2 21
exp((y /

2
| ))k k Helldp x  −

H S V

sampled model ℎ𝑠



Key Ingredients

State definition Observation model

Dynamic model Inference

H

S

V



What is a dynamic model?

• Predicts the target state from its previous estimate.

• This is an example of a constant-velocity model

• Assumption: velocity at k+1 is equal to velocity at k.
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A constant velocity model

• 1D problem, but 2D state space with position and velocity

• Velocity does not change:

x

x
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x F=x x

F=x x
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0 0

x x
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From continuous to discrete

• A continuous motion is sampled at equally spaced time-steps 

(spacing Δ𝑡):

• Solution according to Stengel (p.84)

F=x x

1( ) (t )k ktt −( ) = x Φ x

2 2 3 31 1
2! 3!

( ) eF tt t FF F tI t=  +  = + + +Φ

Robert F. Stengel, Optimal Control and Estimation, Dover Books on Mathematics, 1994



From continuous to discrete

• For the constant-velocity model:

F=x x
0 1

0 0
F

 
=  
 

( ) eF tt =Φ

1
( )

0 1

t
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

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Compute using your favorite 
symbolic toolbox:

Python symbolic toolbox:
>> import sympy as sp

>> from sympy.interactive.printing import init_printing
>> init_printing(use_unicode=False, wrap_line=False)

T = sp.symbols('T’)
>> F = sp.Matrix([[0, 1],[0, 0]])
>> Fi = sp.exp(F*T)

Matlab symbolic toolbox:
>> syms T
>> F = [0 1; 0 0]
>> Fi = expm(F*T)



Discrete constant velocity model

• See if the derived CV model makes any sense:
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But constant velocity is not a very realistic assumption…

, ,



A nearly-constant-velocity model

• Assume that acceleration is not zero, but is noisy:

x w=

x

x
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 

x
0 1 0

0 0 1

x x
w
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x ?

F Lw= +x x

Deterministic

Stochastic– a white noise sequence specified 
by its covariance (spectral density) 𝑞𝑐!

0
cq

𝐺(𝝁 = 0, 𝑞𝑐)



A discrete counterpart

• Solution of                           according to Stengel (p.84)

1 1( )k k kt W− −=  +x Φ x ( ) eF tt =Φ (deterministic)

𝑊𝑘−1 is a random variable:
1

1 ( )Lw( )d
k

k

t

k
t

W   
−

− = 

F Lw= +x x

Governed by a pdf and specified by the covariance matrix:

1
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t

T
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Might want to apply Matlab/Python/Mathematica to solve for 𝑄𝑘−1…

,

Robert F. Stengel, Optimal Control and Estimation, Dover Books on Mathematics, 1994



The covariance Q of a NCV

• Recall:
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Python symbolic toolbox:
>> import sympy as sp

>> T, q = sp.symbols(‘T q’)
>> Fi = sp.Matrix([[1, T],[0, 1]])
>> L = sp.Matrix([[0], [1]])
>>Q = sp.integrate( (Fi*L)*q*(Fi*L).T, (T, 0, T) )

Matlab symbolic toolbox:
>>syms T q
>> Fi = [1 T;0 1]
>> L=[0 ;1 ]
>> Q=int((Fi*L)*q*(Fi*L)',T,0,T)



• We are done:

Let’s simulate:
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Probabilistic model:

1 1( | ) G( ,Q)k k kp − −== xx μx

1k−x
μ

The nearly-constant-velocity model



• A 2D NCV example:

• If you like compact derivation…

• Or, more common and simpler (but equivalent):

• Two separate instances of the NCV model that we derived in previous slides 

(one for x and one for y).
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It is easy to extend to 2D or higher



Random walk dynamic model

• Brownian motion – velocity is noise!

• Apply the same (Matlab/Python) derivation as in previous slides:

1 1( | ) G( ,Q)k k kp − −== xx μx
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Step 1: Write the equation in a form of 
ሶ𝑥 = 𝐹𝑥 + 𝐿𝑤



Widely used dynamic models

• Velocity is non-correlated: 

• Velocity modelled by a white noise sequence

• Random Walk model (RW), Brownian motion

• Acceleration non-correlated:

• Acceleration modelled by a white noise sequence

• Nearly constant velocity (NCV)

• Derivative of acceleration (jerk) non-correlated:

• Jerk modelled by a white noise sequence

• Nearly constant acceleration (NCA)

X. Rong Li, V. Jilkov P., Survey of maneuvering target tracking: Dynamic models, IEEE TAES2003



Key Ingredients

State definition Observation model

Dynamic model Inference

H

S

V



Probabilistic view

• Given a sequence of observations

(think about the observation in most abstract way – an image)

• …want to find the density over the current state

 1: 1:k i i k=
=y y

…

kx

Using the Bayesian terminology:
The posterior over the 𝒙𝑘 𝑘



Towards Recursive Bayes Filter

• The goal is to rewrite the posterior in the current time-step k as a 

function of the posterior from the previous time-step k-1: 

1:k 1 1:k 1(x | ) ( (x | ), y )k k kp y f p y− −=



Towards Recursive Bayes Filter

Assumption 1: Current measurement is conditionally independent from all 

previous measurements given 𝑥𝑘. 

1:k 1 1:k 1
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Towards Recursive Bayes Filter

• Expand the density                         :

• Assumption 2: Current state is conditionally independent from all 

previous measurements given 𝑥𝑘−1. 

1:k 1p(x | )k y −

1:k 1 1 1:k 1 1 1:k 1 1p(x | ) p(x | x , ) p(x | )dxk k k k ky y y− − − − − −= 

1 1:k 1 1p(x | x , ) p(x | x )k k k ky− − −

1:k 1 1 1 1:k 1 1p(x | ) p(x | x ) p(x | )dxk k k k ky y− − − − −= 



The Bayes Recursive Filter

• Putting it all together:

• The denominator does not depend on the state:

1 1 1:k 1 1

1:k

1:k 1

( | x ) p(x | x ) p(x | )dx
(x | )

( | )

k k k k k k

k

k

p y y
p y

p y y

− − − −

−

=


posterior 
at k

posterior 
at k-1

likelihood
(observation model)

motion model
(dynamic model)



Observe a scene at kObserve a scene at k-1

Posterior pdf∝likelihood *
Predicted prior 

knowledge (pdf)

+

+

Recall the airplane tracking example



Recursive Bayesian Filter

• At each time-step estimate the posterior:

posterior 
estimate

Observation
model

motion model posterior 
at k-1

tk-1 tk

predictmeasureupdate

tk+1
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