Previously at ACVM...

from time t to t+1 evaluate classifier on sub-patches

e Discriminative trackers

e Adaboost
e TMIL
e Structured SVM

analyze map and set new

update classifier (tracker) obiact position

 Discriminative correlation filters

* Linear classifiers (ridge regression learning)

e Efficient computation via FFT

e: Template: h Ideal correlation output: g

* h:? =
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Classes of trackers

e A tracker can be roughly classified by considering the following
two properties:

Property 1: Batch tracking vs. Online tracking

* How many images are considered to estimate the state at time-step t ?

Property 2: Non Bayesian vs. Bayesian tracking

e How is the notion of the target state encoded?




Online vs Batch tracking

e Batch tracking: Can consider all frames before t and after t to infer the

target position at time-step t.

L=

Potentially robust, appropriate for offline systems

* Online tracking: Can consider only frames before t to infer position at t.




Non Bayesian vs Bayesian tracking

Question: “How is the information of the target state encoded?”

NON-BAYESIAN
* Local optimum

e Gradient descent

* Mean Shift

* Greedy local search, etc.

* Fast convergence

* Single solution for the state value

e Butis it correct?

Starting position
similarity/probability




Non Bayesian vs Bayesian tracking

Question: “How is the notion of the target state encoded?”

BAYESIAN
e Assign a probability to each position of the target

* Relevant info is encoded in the pdf over the target state!
* Implicitly remembers multiple hypotheses of “location”.

* Interpret the pdf when required

* Typically slower
»

This is our estimate!




Non Bayesian vs Bayesian tracking

Question: “How is the notion of the target state encoded?”

BAYESIAN
 The pdf changes with time — an entire pdf is tracked

 Example of a pdf:
* p(Ball|xy),

* Expected value:

X = <xk >p(Ball|xk)




Examples: Online tracking

* Non Bayesian * Fully Bayesian

 Mean Shift * Bayes recursive filters

Comaniciu et al. “Kernel-Based Object Tracking”, Isard et al., “CONDENSATION -- conditional density
IEEE TPAMI., 2003 propagation for visual tracking” 1JCV, 1998




Practical challenges

®» Change in
appearance

e Level of detail

* Occlusion by visually
similar objects

e Clutter

* Target motion

* [nteracting targets

Cehovin, Kristan and Leonardis,“An adaptive coupled-layer visual model for robust visual tracking”, ICCV2011



Practical challenges

 Changein
appearance

®» Level of detail

* Occlusion by visually

similar objects
e Clutter
* Target motion

* [nteracting targets

Kristan et. al,"Closed-world tracking of multiple interacting targets for indoor-sports applications”, CVIU2009




Practical challenges

 Changein
appearance

e Level of detail

® Occlusion by visually
similar objects

e Clutter
* Target motion

* [nteracting targets

M. Kristan et al., "A Local-motion-based probabilistic model for visual tracking®, Pattern Recognition, 2009



Practical challenges

 Changein
appearance

e Level of detail

* Occlusion by visually
similar objects

® Clutter

%6/12/2005 §T1ME CODE |
11:54a -.CAH 320 spa-c* ¢ Target motion

-

"l

= 2k * Interacting targets

Z. Khan, T. Balch, and F. Dellaert, "MCMC-Based Particle Filtering for Tracking a Variable Number of Interacting Targets”
IEEE TPAMI, 2005.



Practical challenges

 Changein
appearance

e Level of detail

* Occlusion by visually
similar objects

e Clutter
B Target motion

* [nteracting targets

Isard, M. and Blake, A. "CONDENSATION --conditional density propagation for visual tracking”, 1JCV1998




Practical challenges

 Changein
appearance

e Level of detail

* Occlusion by visually
similar objects

e Clutter

* Target motion

®» Interacting targets

Kristan et al.,"Closed-world tracking of multiple interacting targets for indoor-sports applications"CVIU 2009.



Practical challenges

These issues can be addressed efficiently ™ Change in
using probabilistic approaches! appearance

®» Level of detail

® Occlusion by visually

similar objects

» Clutter

B Target motion

IR

v bl IR
oo @@p-e ® Interacting targets




Recursive Bayes Filters

* A principled way to address uncertainty in visual tracking

Probabilistic

. \\ dynadm:c
Recursive N
- Bayes
I\\\ Fi |te r i n g / Probabilistic

\ visual model

\\\ ) P /// /i
-

~ - ~
\ y \
\ '4‘ \
\ ; \

| Recursive | Probabilistic
| computation | interaction




Consider tracking an airplane as an example

Observe a scene at t-1 Observe a scene at t

Observed scene at t

Plane at t—




Bayesian tracking as a state estimation problem

e Stateattimet: x; (e.g., position)

* Measurementat t: y; (e.g., location obtained by detector)

* Approach: Given all we know about the target and the measurements we
take, what is the probability that a target is at state x,?

From this: Infer this: p(xtlye) =7

Observed scene at t

Plane at t-1




What is a Bayes Filter?

 Key idea 1: Reason about the target states in terms of pdfs

e Detector is uncertain Observe a scene att

* Can consider each “detection”,e.g., as a center of a

Gaussian
* @Gives a measurement pdf

A noisy detector

Plane at t-1

p(x¢lye) =7

Measurement pdf % Prior knowledge (pdf) & Posterior pdf




What is a Recursive Bayes Filter?

* Keyidea 1: Encode beliefs about states in a pdf

t t+1 t+2

* Key idea 2: Recursively estimate the posterior

Predict

 Predict from uncertain motion model / \
e Measure from uncertain sensor 0 2 Wemue

* Update distribution

Update

'w



Recursive Bayes Filter: Key ingredients

T

Dynamic model:

How do we represent
the target dynamics?

t t+1

atateddeflnltlon: , Predict Observation model:
Qi ehe) BE refgireEEi How do we measure

he tar rameters?
the target parameters \ the target presence?

Prior pdf Measure

Inference:
Update How do we combine the prior,
dynamics and measurements?




Key Ingredients

State definition Observation model

)

Inference




Key Ingredients

N )

State definition Observation model

Inference




What is a state of the target?

* Target properties at a time-step

* Encodes parameters (which we want to estimate)

X1:N = {X1, -, Xp_ 1, Xy Xpp—1,-- -, XN} = {Xp}1:N

O o

timestep 1 timestep 2 timestep 3 timestep 4

>

* Parametric form of the state x; depends on the model by which we

describe the target.




How do we define a state?

* Define the state by the target “free” parameters.

 Examples:
* Location
Xk — [339 y]
e Location + size H(
k — P
X = |z,y,s] g
* Location + velocity Y A [x,(f) — [6,5,20]]
Xk — [SC, Y, Li?, y] @\1@ OV
S
* Multiple objects (joint state) ,K
(1) _
xy = {x{0, x(?) L= =310 |




State definition: Example 1

* Axis-aligned blobs (bounding box, ellipse)
* center
* width + height

* velocity

6D X = [Cll',y,.fb,y,ch,Hy]

‘-------»

Kristan et al., "A Local-motion-based probabilistic model for visual tracking". Pattern Recognition, 2009.




State definition: Example 2

 Part-based models, Constellation models
* Center, velocity
e Relative part locations
e Varying number of parts

(1) (D) ) Ny

Xp = [ﬂ?c,yc,fcc,yc,xk Y Ve e X

Cehovin, Kristan and Leonardis,“An adaptive coupled-layer visual model for robust visual tracking”, TPAMI2013



Key Ingredients

-

U

State definition

Observation model

~

-

kL

Dynamic model

2>

Inference




What is the observation model?

* Transforms measurement into a probability

* The likelihood of observing y, assuming the target is located at

state xx: p(yi|xk)

P(Yklxk)

Low likelihood.

High likelihood.

observed image likelihood map

If the observation model was ) ‘
evaluated at each possible state x... J




Observation model

1. Choose a visual model
(e.g., histograms, HOG, template, ...)

2. Define similarity function with the visual model

3. Define a function that maps similarity to probability

(i.e., zero similarity -> zero probability and vice versa)




Observation model: Example 1

e Skin color sampled from a region

1 _
e clusters in chromatic space — model by a Gaussian  P(Y | %) < eXIO(—E(X—ﬂ)TZ H(x= 1))

Input image

—id

similarity/probabilit;;




Observation model: Example 2

* Histograms
* Color histograms

* Hellinger distance between reference h,. and sampled histogram hg: dye;; (hy, hg)

reference model h,

sampled model h,

04 04 04

0.3 0.3 S 03 V

02 0z 02

a1 01 0.1

%% 05 1 %% 05 1 °75 60 120 180 240

1
(Y, | %) o exp(—adﬁe.. /o)




Key Ingredients

-

State definition

@

— —

h 1

[ « [ - -
n I N
Q pro— | N

-

Dynamic model

4 )

Observation model

Inference

855




What is a dynamic model?

* Predicts the target state from its previous estimate.

X, =X +V, At
Yiar = Vi TV Al

* This is an example of a constant-velocity model

* Assumption: velocity at k+1 is equal to velocity at k.



A constant velocity model

1D problem, but 2D state space with position and velocity

X .
x=| | — X=FX F="7
X

* Velocity does not change:

X = FX




From continuous to discrete

* A continuous motion is sampled at equally spaced time-steps
(spacing At): X = FX

i 5, .

S
4

I o W l< .
1 € »

At =111 — 1,

* Solution according to Stengel (p.84)
X(t,) = @(A)x(t, ;)
D(At) =e™ = + FAt+ L F°At> + L F3At® + ...

Robert F. Stengel, Optimal Control and Estimation, Dover Books on Mathematics, 1994



From continuous to discrete

* For the constant-velocity model: Compute using your favorite
symbolic toolbox:
_O 1_ (I)(At) = eFAt
(= F F 1 At
X=FX —
0 0 D (At) =
VU 0 1
Matlab symbolic toolbox: Python symbolic toolbox:
>> SymS T ;>>I;‘:g?r:tssgr:?;/.i:gractive.grintir|1g import ilnit_prir|1tir)1g
_ ) >> init_printing(use_unicode=False, wrap_line=False
zz ::-__[O 10 I(:)’]"T T = sp.symbols('T’)
i = expm(F*T) >> F = sp.Matrix([[0, 1],[0, O]])

>> Fi = sp.exp(F*T)



Discrete constant velocity model

e See if the derived CV model makes any sense:

1 At X, |
X, =D At X, , () At — , X, =
= P(A)x, ()_O . <y
Xy 1 Xy
) 1
— | At
X | [1 At x. X, =X _, +X_,At
X ] 10 1| %, X=X

But constant velocity is not a very realistic assumption...



A nearly-constant-velocity model

* Assume that acceleration is not zero, but is noisy:

X=W
X | o Ix] o 2] x] [_
X=| X=| |= |+ P W
X X |10 O x] |

X = FX 4+ LW «— Stochastic— a white noise sequence specified
/ by its covariance (spectral density) g,!

Deterministic | G(u=0,q.)




A discrete counterpart

* Solution of X = FX+ Lw according to Stengel (p.84)

X, =®(At)x,  +W,,  ®(At)=e"™ (deterministic)

Wy _q is a random variable: W,_, = rk d(7r)Lw(r)dr

]

Governed by a pdf and specified by the covariance matrix:
At T
Qs =], (@E)L)q.(@(E)L) d&

Might want to apply Matlab/Python/Mathematica to solve for Q...
- Robert F. Stengel, Optimal Control and Estimation, Dover Books on Mathematics, 1994



The covariance Q of a NCV

e Recall: - _

1 At X 0 1| X
D(AL) = X =
(A1) _O 1_ X 0O O] X 1

]
_|_
=

At ; | 2AP AL
Qs =], (@) L)a. (@) L) d¢ Q—q{%mz A }

Matlab symbolic toolbox: Python symbolic toolbox:
>>Syms Tq >>T, q = sp.symbols(‘T q’)
>>Fi=[1T;01] >> Fi = sp.Matrix([[1, T],[0, 1]])
>> =[0;1] >> L = sp.Matrix([[0], [1]])

>> Q=int((FI*L)*q*(FI*L),T,0,T)  55q = sp.integrate( (Fi*L)*q*(Fi*L)T, (T, 0, T) )



The nearly-constant-velocity model

* Wearedone: X, =®x, , +W, W, , ~G(u=0,Q)
1 At IALS LIAL?

D = Q=q|; , °
_O 1 i _%At At |

Let’s simulate: Probabilistic model:

P(X, [X1) =G(p=Dx,,,Q)

n
Xk—l




It is easy to extend to 2D or higher

* A 2D NCV example: Y.
* If you like compact derivation... (9%.///6
{SO/) Q,o
o i e P, 2
X 010 0[[x] [0 0 o O,
% 0 00 0l|x| |1 Ofw, S
y 0 00 1]yl [0 0w,
y 000 0|y| |01

* Or, more common and simpler (but equivalent):

* Two separate instances of the NCV model that we derived in previous slides
(one for x and one for vy).



Random walk dynamic model

* Brownian motion — velocity is noise!

X = Step 1: Write the equation in a form of
X X =W x =Fx+ Lw

x] [0 o][x] [1°
+ W
x| [0 ofx| |0

X =

* Apply the same (Matlab/Python) derivation as in previous stes:

X =X +Wk—1 w X X
O X
X X Xy 1 X
p(Xk | Xk_1) = G(ll = Xy _11 Q) y X




Widely used dynamic models

* Velocity is non-correlated:
* Velocity modelled by a white noise sequence
e Random Walk model (RW), Brownian motion
* Acceleration non-correlated:
* Acceleration modelled by a white noise sequence
* Nearly constant velocity (NCV)
* Derivative of acceleration (jerk) non-correlated:

* Jerk modelled by a white noise sequence

* Nearly constant acceleration (NCA)

X. Rong Li, V. Jilkov P., Survey of maneuvering target tracking: Dynamic models, IEEE TAES2003



Key Ingredients

-

State definition

T— — —

4 )

Observation model

Dynamic model

]
[ -~ ‘\ b

k -

4 h

Inference

3505




Probabilistic view

- Given a sequence of observations Yy =1{Yi} _..

(think about the observation in most abstract way —an image)

* ..want to find the density over the current state X,

P(Xk|y1:%)

Using the Bayesian terminology:
The posterior over the x,




Towards Recursive Bayes Filter

* The goal is to rewrite the posterior in the current time-step k as a
function of the posterior from the previous time-step k-1:

p(xk | yl:k) — f(p(xk—l | yl:k—l)’yk)

N\




Towards Recursive Bayes Filter

PCY [ X Vi) PO | Ve n)
p(yk | yl:k—l)

Assumption 1: Current measurement is conditionally independent from all

p(Xk | yl:k) —

previous measurements given x;.

p(Yk |Xk’ yl:k—l) = p(Yk |Xk)

P(Y, | X)) P | Yires)

PX, | Vo) =
o O(Y, | Vi)
e




Towards Recursive Bayes Filter

 Expand the density P(X, | Y1) :
p(xk | yl:k—l) — : p(Xk | Xk—l’ yl:k—l) p(Xk—l | yl:k—l) dxk—l

* Assumption 2: Current state is conditionally independent from all

previous measurements given xj _1.

p(xk | Xy11 yl:k—l) = p(xk | Xk—l)

PO Vi s) = [ POG X0 POG s | Vi) O,y
D ———



The Bayes Recursive Filter

e Putting it all together:

P(Yie 1% PO 1%, 1) POy | Vi 1) X
PCYi | Vi)

p(Xk | yl:k) —

* The denominator does not depend on the state:

P(Xk|y1:k) X p(VelXg) [ P(Xg|xp—1)p(Xp—1]y1:6—1)dXg_1

posterior { posterior
at k motion model at k-1
(dynamic model)
likelihood

(observation model)



Recall the airplane tracking example

Observe a scene at k-1 Observe a scene at k

('

S p(xp|xp—1)P(Xp—1]¥1:k—1)dXg—1

P(Yklxk) Predicted prior P(Xk|y1:k)
likelihood * knowledge (pdf) X Posterior pdf




Recursive Bayesian Filter

* At each time-step estimate the posterior:
P(Xgly1:k—1)

P(Xk|y1:%)

T~

t,. t,  P(Yr|xk)

ﬁ tk+1 %

update ﬁ measurﬁ predic’ﬁ

P(Xkly1:k) < p(Yi|xK) [ P(Xk|Xp—1)p(Xp—1|¥1:—1)dXk_1

posterior Observation  motion model posterior
estimate model at k-1

P(Xp—1|¥1:%-1)
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