
Advanced CV methods
Mean Shift tracking

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme,
Fakulteta za računalništvo in informatiko,

Univerza v Ljubljani

A toy-example – detector

• An imperfect detector says whether a selected region might contain a

target or not.

“Detector” usually fires
correctly, but sometimes

incorrectly

But more often
it fires correctly…

Observe: densely-populated
areas contain a target
with a high probability

Today’s topic:
Finding the “most probable” position.

Outline

1. The theory behind the Mean Shift algorithm

2. Tracker based on the Mean Shift algorithm

THE MEAN SHIFT THEORY
Advanced Topics in Computer Vision

Intuitive description

Distribution of “detections”

Region of
interest

Center of
mass

Objective: Find the densest region

Intuitive description
Region of
interest

Center of
mass

Mean Shift
vector

Distribution of “detections”
Objective: Find the densest region

Intuitive description
Region of
interest

Center of
mass

Distribution of “detections”
Objective: Find the densest region

Mean Shift
vector

Intuitive description
Region of
interest

Center of
mass

Distribution of “detections”
Objective: Find the densest region

Mean Shift
vector

Intuitive description
Region of
interest

Center of
mass

Distribution of “detections”
Objective: Find the densest region

Mean Shift
vector

Intuitive description
Region of
interest

Center of
mass

Distribution of “detections”
Objective: Find the densest region

Mean shift in a nutshell

• Estimate mean:

Estimate the mean from the data in the neighborhood.

• Estimate the shift:

Estimate the shift as the vector from the current mean to the

estimated one.

(k)x

(k 1)x +

(k)(x)k

(k)x

(k)(x)k

The mean shift vector

(k)(k 1) (k)(x)kx x+ + =

What is a Mean Shift? (maths)

• A way to find the modes of a probability density functions (pdf) – a

gradient ascent on pdf!

• We will apply it to nonparametric pdfs.

(x)p

0(x)p

… a probability
density function.

… a gradient of
a 𝑝(𝑥) evaluated
at 𝑥0.

(x)p

0(x)p

Kernel density estimation (KDE)

• The data samples are already an estimate of a pdf!

• Usually we assume a smooth pdf:

A mixture of
Dirac-delta functions

()K x

* =
1

1
(x) ()i

N

i
p K x x

N =
= −

kernel Kernel density estimate

Kernel density estimation (KDE)

Kernel Properties:

• Normalized

• Symmetric

• Homoscedastic

() 1
dR

K d = x x

() 0
dR

K d = x x x

()
d

T

R

K d c= xx x x I

N data-points

1

1
() ()

N

i

i

p K
N =

= x x - x

The KDE

(x)K

Examples of kernels
N data-points

1

1
() ()

N

i

i

p K
N =

= x x - x(x)K

Examples:

• Epanechnikov Kernel

• Uniform Kernel

• Normal Kernel

()2
1 1

()
 0 otherwise

E

c
K

 − 
= 


x x
x

1
()

 0 otherwise
U

c
K

 
= 


x
x

21
() exp

2
NK c

 
=  − 

 
x x

The KDE

• A note on the kernel size – the bandwidth h

• We will use the following definition:

* =

* =

2

() i
iK c k

h

 
=   

 
 

x - x
x - x

large h

()iK x - x

small h

()iK x - x

For advanced approaches for bandwidth estimation see: Kristan, et al., Multivariate Online Kernel Density
Estimation with Gaussian Kernels, Pattern Recognition 2011

large h

small h

“Nonparametric” with parameter 𝒉?

Gradient ascent on a KDE

• The KDE calculated from weighted data

• Goal: Climb the mode!

• Approach:

• Iteratively solve

1

(x x(x))i

N

i

iKp w
=

= −
1

1i

N

i

w
=

=
2

(x x) ck()i
i

x x
K

h

−
− =, ,

(k) (k 1)(x) 0p x +  ⎯⎯→

Gradient ascent on a KDE

• The density model:

• The partial derivative (the gradient):

2

1

(x) k
N

i

i
i

x x
p c w

h=

 −
=  

 
 



2

1

(x) (x) k i
i

N

i

x x
p p c w

x x h=

 − 
 = =  

    
1.

2 2

2

2
k (x x)gi i

i

x x x x

x h h h

   − −
= − −   

       
 , where (r) k'(r)g = −2.

2

1

2

1
2

2
(x)

N
i i

i i i

N

i i

x x x xc
p w x g x w g

h h h= =

    − −
 = −    

        
 3.

Gradient ascent on a KDE

• Setting the partial derivative to zero gives:

• Expressing the 𝑥:

1

1

2

2

()

()

i

i

N

i i

x x

hi

N x x

i i h

x w g
x

w g

−

=

−

=

=




() 0p x
x






2 2

2
1 1

2
0

N N

i i

i i
i i i

x x x xc
w x g x w g

h h h= =

    − −
= −    

        
 

Problem: 𝑥 is on the left-hand
as well as the right-hand side.

Solution: apply iterations.

Gradient ascent on a KDE

• Iterative approach:

• Plug 𝑥(𝑘)to the right-hand side

• Get a new estimate 𝑥(𝑘+1)

1kx +
kx

(k)

(k)

2

2

1(k 1)

1

()

()

i

i

N x x

hi i i

N

hi

x x

i

x w g
x

w g

−

=+

−

=

=




(k)(x)m

The mean shift vector is proportional to the gradient on the pdf!

𝑚(𝑘) = 𝑥(𝑘+1) − 𝑥(𝑘) … The mean shift vector

()p x
x






Previously at ACVM…

Patch tracking as incremental image registration

• Iteratively improve warp parameters to match template 𝑇(𝑥)

()
2

E() (W(x;p)) T(x)
x

p I p = +  −

𝐸(𝑝)

Previously at ACVM…

• Mode detection by Mean Shift:

(k 1) 1

n

i

i

x

x
n

+ ==


• Mean Shift: Iterative approach to finding densely populated regions

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5 𝛻𝑝(𝑥)

MS = gradient ascent on a KDE!

𝑝(𝑥)

Nonparametric pdf: KDE

*

𝑘(𝑥)
(k)

(k)

2

2

1(k 1)

1

()

()

i

i

N x x

hi i i

N

hi

x x

i

x w g
x

w g

−

=+

−

=

=




𝑔 𝑟 = −𝑘′(𝑟)

Mean Shift == gradient ascent

Mean Shift properties

Adaptive
Gradient
Ascent

• Automatic convergence speed – the mean shift
vector size depends on the gradient itself.

• Near maxima, the steps are small and refined

• Convergence is guaranteed for infinitesimal
steps only ➔ infinitely convergent,
(therefore set a lower bound on the step size or change in cost)

• For Uniform Kernel (), convergence is achieved in
a finite number of steps

• Normal Kernel () exhibits a smooth trajectory, but
is slower than Uniform Kernel ().

Mean-shift cluster discovery

Meer et al., Mean shift: a robust approach toward feature space analysis, TPAMI 2002

MEAN SHIFT TRACKER
Advanced Computer Vision Methods

Mean Shift tracking example

• Tracking using color!

http://www.youtube.com/watch?v=RG5uV_h50b0

Recall the similarity measure in LK

• Quantify the similarity between the visual model and the target region

• Sum of squared differences

RegionTemplate Sq. diff.

-()2=

σ𝑠𝑞. 𝑑𝑖𝑓𝑓 =113563

Problems with SSD

• Assume we are interested only in position and size

• What happens when the object slightly rotates?

RegionTemplate

-()2=
Large
number

(...good)
RegionTemplate

-()2=
Large
number
as well
(...bad)

Require a visual model
that is invariant to rotation…

Color histograms

• Invariant to rotation, scale, partial occlusion, etc.

Invariance is good…

But not always…

Mean Shift tracking: Intuition

• A highly cited paper1

1Mean Shift : A robust Approach Toward Feature Space Analysis, by Comaniciu, Meer, TPAMI, 2002

Start at previous estimate New estimate

Visual model

Color histograms, edge
histograms, etc.

1. “Could calculate” for each window
the similarity to the visual model.

2. Move locally in direction of increased similarity.
(NOTE: it’s not really done like that!
It’s done WITHOUT directly computing similarity!)

Similarity to template

Target representation – histograms

Choose a
reference

target region

Represent the
target image by

its PDF in the
feature space

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 . . . m

color

P
ro

b
a
b

il
it

y

1

1
m

u

u

q
=

=

 
1..u u m

q q
=

=

Image: I

Quantize the
Color Space into

m colors

b = floor[I ∗
𝑚 − 1

255
]

Choose a
feature space

Image: b

A weighted visual model

• Assign higher weights to the pixel colors closer to center

 
1..i i n

x
=

… Target pixel locations ()k x … Smooth, decreasing kernel

()i iu b x= … Color bin index (u={1…m}) of pixel 𝑥𝑖

Normalization
constant: 𝐶 = σ𝑖 𝑘(𝑥𝑖

2)

Pixel weight
0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 . . . m

color

P
ro

b
a
b

il
it

y

()k x

x

 
1..u u m

q q
=

= ()2

1

(b(x))i

N

u i u

i

q C k x 
=

= 

u

𝑞𝑢

The target “candidate”

• Want to check whether this region contains the target

• We use the same kernel, but with different bandwidth h

x

Candidate region

Normalization
factor

Pixel
weighting

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 . . . m

color

P
ro

b
a
b

il
it

y

 
1:

(x) (x)u u m
p p

=
=

()
2

1

(b(x))
N

i
u h

i

u i

x x
p x C k

h


=

 −
=  

 
 



Probability of feature u in candidate

() (),x q p x =   Similarity function:

Target Model Target Candidate
(centered at x)

 
1..

1

1
m

u uu m
u

q q q
=

=

= =

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 . . . m

color

P
ro

b
a
b

il
it

y

() () 
1..

1

1
m

u uu m
u

p x p x p
=

=

= =

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 . . . m

color

P
ro

b
a
b

il
it

y

Manually select
the target in
the first frame

Search for the
target in the
new frame

Histogram similarity measure

Similarity measure for histograms

• The Bhattacharyya measure (related to Hellinger distance)

• Similarity between distributions q and p

• Note: The similarity function 𝜌 𝑥 will be spatially smooth since we smooth the

histograms at acquisition!

() () ()()
1
2

1' , , mp x p p x p x= =

()
1
2

1' , , mq q q q= =

'q

()'p x



1

1

() ()' ' cos
T

x p x q = =

() ()
1

m

u u

u

x p x q
=

=

()()(x) ,p x q 

Start from the
position of the
model in the

current frame

q

Search in the
model’s

neighborhood
in next frame

()p x

Find best candidate
by maximizing a

histogram similarity

The catch: how to perform localization quickly?

Localization by histogram similarity

Gradient ascent on similarity

• Iterative approach to maximization

• Start at some 𝑥0, estimate gradient, move to 𝑥1

Apporach:

1. Linearize ρ 𝑥 at 𝑝(𝑥0)!

2. Then maximize the

linearized version w.r.t.

the position 𝒙.

()(),p x q

()()0 ,p x q 0x

• Linearize ρ(𝑝 𝑥0 + 𝛿, 𝑞) at 𝑝(𝑥0):

• Reparameterize:

• Can maximize 𝜌(𝑝 𝑥 , 𝑞) by only considering the last term, i.e.,:

00 0 x(p(x) ,q) (p(x),q) T    + = +

0p(x) p(x) = +

0 00 x 0 x(p(x),q) (p(x),q) p(x) p(x)T T   = − +

does not depend on x!

0

*

0arg max (p(x),q) arg max (x)T

x
x x

x p= = 

Let’s calculate this term

Linearization of similarity function

Maximization of

• This is our cost function:

• Plugging the gradient 𝛻𝜌𝑥0
𝑇 in the cost function gives

0
(x) (x)T

xE p=

1 1
2 2

0

1
0

1 1 0 0 0

(x) ,
(x)

q qq1
(q) , , ,

2 (x) (x)

T
m

T u m
x

u

u u

u m

p
p p p


=

 
= = 
 

 



p

0

1 0

q1
(x)

2
(x) (x)

(x)

m
T u
x u

u u

E pp
p


=

==  

This is what we want to maximize w.r.t. x!

0
(x)T

x p

𝒑 = 𝑝1, 𝑝2, … , 𝑝𝑢, … , 𝑝𝑚
𝑇

() ()
1

m

u u

u

x p x q
=

=

Maximization of

• Cost function:

• Recall definition:

• With some manipulation, we can rewrite the cost:

0

1 0

q1
(x)E(x

2
) (x)

(x)

m
T u
x u

u u

pp
p


=

==  

()
2

1

(b(x))
N

i
u h

i

u i

x x
p x C k

h


=

 −
=  

 
 



1

2

E(x)
1

2

i
N

h i

i

x x
w k

h
C

=

 −
=  

 
 


(x)

(x) 0x)

q

(

i

i

b

i

bp
w =

Note: 𝐸 𝑥 is a KDE and we can find the mode by applying
Mean Shift iterations!

0
(x)T

x p

* arg ma ()x x
x

x E=

Maximization by Mean Shift

• This is the rewritten cost function:

• Apply Mean Shift iterations:

1

2

E(x)
1

2

i
N

h i

i

x x
w k

h
C

=

 −
=  

 
 


(x)

(x) 0x)

q

(

i

i

b

i

bp
w =

2
(k)

(k 1)

2
(k)

1

1

N

i i

i

i

i
N

i

i

x x
x w g

h
x

x x
w g

h=

+
=

 −
 
 
 =
 −
 
 
 





() ()'g x k x= −

Simplification of Mean Shift

Epanechnikov kernel 𝑘(𝑦):

() ()
1 if y 1

0 otherwise
y

g y k y


  
= − =  

 

Derivative 𝑔 𝑦 is the Uniform kernel:

2
(k)

(k 1)

2
(k)

1

1

N

i i

i

i

i
N

i

i

x x
x w g

h
x

x x
w g

h=

+
=

 −
 
 
 =
 −
 
 
 





() ()y
g y k y


= −

()
1 if y 1

0 otherwise

y
k y

 −  
=  
 

(k 1) 1

1

n

i i

i

n

i

i

x w

x

w

+ =

=

=




(x)

(x) 0x)

q

(

i

i

b

i

bp
w =,

2
(k)

(k 1)

2
(k)

1

1

N

i i

i

i

i
N

i

i

x x
x w g

h
x

x x
w g

h=

+
=

 −
 
 
 =
 −
 
 
 





The MS tracking in a nutshell

• Initialize target model (histogram) 𝒒.

• Note: use a smooth kernel, e.g., Epanechnikov

• New frame: start at some location

1. Extract the histogram 𝒑 at the current location using the Epanechnikov kernel

2. For each pixel in the bounding box calculate the weight:

3. Calculate the new position by:

• Iterate 1-3 until convergence

(x)

(x)

q
i

i

b

i

b

w
p

=

(k 1) 1

1

n

i i

i

n

i

i

x w

x

w

+ =

=

=



weights

The tracking algorithm

MEAN SHIFT TRACKING STEPS ILLUSTRATED
Advanced Computer Vision Methods

Implementation of histogram extraction:
• Go over all pixels in the cut out image.
• For each pixel compute the histogram bin from its color.
• Look up the weight of the pixel coordinate in the Kernel image.
• Increment the content of histogram bin by the weight.
• Normalize the histogram to make the sum of all cells equal to one.

(i.e., divide each cell by sum of all cells)

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

q

Kernel
Cut out the

target image
Histogram extracted

using the Kernel

()2

1

(b(x))i

N

u i u

i

q C k x 
=

= 

Initialization:

Frame 0

A single iteration within a time-step

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

q

Kernel
Cut out the

target image
Histogram extracted

using the Kernel

()2

1

(b(x))i

N

u i u

i

q C k x 
=

= 

Initialization:

Tracking in Frame 1: iteratively re-localize the target by MS (step 1b)

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

p

Kernel

• The current estimate of the target position is the position from previous time-step
• Cut out the image from the current estimate (bounding box)
• Calculate the weighted histogram 𝑝 using the Kernel

Frame 0

Frame 1

Histogram extracted
using the Kernel

Cut out the target image

A single iteration within a time-step

(x)

(x) 0x)

q

(

i

i

b

i

bp
w =

2
(k)

(k 1)

2
(k)

1

1

N

i i

i

i

i
N

i

i

x x
x w g

h
x

x x
w g

h=

+
=

 −
 
 
 =
 −
 
 
 





1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

p

Kernel

Calculate the weight of each color bin from the target and candidate histogram:

Frame 1

Histogram extracted
using the Kernel

Cut out the target image

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

q

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

p

}
1 2 3 4 5 6

0

0.5

1

1.5

𝑉

qu
u

up
v

eps
=

+

eps is some small number
for numerical stability,
i.e., 1e-3 … 1e-10.

A single iteration within a time-step
Tracking in Frame 1: iteratively re-localize the target by MS (step 2c)

!! Source of many errors – don’t set eps too small!

(x)

(x) 0x)

q

(

i

i

b

i

bp
w =

2
(k)

(k 1)

2
(k)

1

1

N

i i

i

i

i
N

i

i

x x
x w g

h
x

x x
w g

h=

+
=

 −
 
 
 =
 −
 
 
 





1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

p

Kernel

Back project the weight histogram 𝑉 into the image:
• For each pixel in the cut out image identify the histogram bin corresponding to its color.
• Set the intensity value of the pixel in backprojected image to value of the histogram V bin
• The backprojected image is same size as the cut out image

Frame 1

Histogram extracted
using the Kernel

Cut out the target image

1 2 3 4 5 6
0

0.5

1

1.5

𝑉

w

A single iteration within a time-step
Tracking in Frame 1: iteratively re-localize the target by MS (step 2c)

(x)

(x) 0x)

q

(

i

i

b

i

bp
w =

Tracking in Frame 1: iteratively re-localize the target by MS (step 2c)

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

p

Kernel

Multiply the backprojected image by the kernel 𝑔(𝑟):
• The kernel is derivative of the reparameterized Kernel w.r.t. parameter:

Frame 1

Histogram extracted
using the Kernel

Cut out the target image

()
1 if r 1

0 otherwise

r
k r

 −  
=  
 

/ir h= −c x

Epanechnikov kernel:

center pixel coordinate in the cutout window

cc

()k r

𝒙𝒊

𝒓 𝒓

𝒙𝒊

A single iteration within a time-step

2
(k)

(k 1)

2
(k)

1

1

N

i i

i

i

i
N

i

i

x x
x w g

h
x

x x
w g

h=

+
=

 −
 
 
 =
 −
 
 
 





Tracking in Frame 1: iteratively re-localize the target by MS (step 2c)

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

p

Kernel

Multiply the backprojected image by the kernel (derivative kernel):
• The kernel is derivative of the reparameterized Kernel w.r.t. parameter:

Frame 1

Histogram extracted
using the Kernel

Cut out the target image

/ir h= −c x

() ()
1 if r 1

'
0 otherwise

g r k r
  

= − =  
 

The “derivative” of the Epanechnikov is a Uniform kernel:

𝑔(𝑟)

()
1 if r 1

0 otherwise

r
k r

 −  
=  
 

Epanechnikov kernel:

A single iteration within a time-step

Tracking in Frame 1: iteratively re-localize the target by MS (step 2c)

Kernel

Multiply the backprojected image by the kernel:
• The kernel is derivative of the reparameterized Kernel w.r.t. parameter.
• In case of Epanechnikov kernel, the derivative is a Uniform kernel,

which does not change the backprojected image at all!

Frame 1

Cut out the target image

B B

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

p

Histogram extracted
using the Kernel

A single iteration within a time-step

Tracking in Frame 1: iteratively re-localize the target by MS (step 3)

Kernel

Compute the weighted average position:

Frame 1

Cut out the target image

Repeat until convergence:
• (1a) Cut out image at new position
• (1b) Compute 𝒑
• (2a) Compute 𝑽
• (2b) Compute back-projected image W
• (2c) Multiply by derivative kernel
• (3) Calculate average position

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

p

Histogram extracted
using the Kernel

(k 1) 1

1

n

i i

i

n

i

i

x w

x

w

+ =

=

=




A single iteration within a time-step

Apply iterations until covergence

Cropped windows Backprojections

p

p

p

p

x

x

x

x

Tracking in Frame 1: iteratively re-localize the target by MS (all steps)

Frame 1Frame 0

Frame 1

Outputs of
MS iterations:

Implementation details

• Repeat MS iterations until the shift < 1 pixel

• Limit the number of iterations to 𝑁𝑚𝑎𝑥=20

• Kernels with Epanechnikov profile are preferred since the iteration

becomes very simple.

(but other kernels can be used as well)

• For speed: usually rescale the image such that the target is of size

50x50 pixels.

• Recommended using RGB histogram 16 × 16 × 16 bins

• For further details see the paper1.

1D. Comaniciu, V. Ramesh, P. Meer: Kernel-Based Object Tracking, TPAMI, 2003

Integrated feature selection

• Can search for the target by focusing on the features that discriminate

the target from the background

D. Comaniciu, V. Ramesh, P. Meer: Kernel-Based Object Tracking, TPAMI, 2003 (Sec. 6.1)

Correct target and candidate model:

(corrected) ()original

u uuq c q=

(corrected) ()original

u uup c p=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 . . . m

P
ro

b
a
b

il
it

y

color

Extract a histogram: ො𝑜 = ො𝑜𝑢 𝑢=1 : 𝑚

*

1:

ˆ
min ,1

ˆ
u

u u m

o
c

o
=

   
=  

   

Smallest nonzero entry

Mean Shift tracking example

Feature space:
161616 quantized RGB
Target:
manually selected on 1st frame
Average mean-shift iterations: 4

Mean Shift tracking example

Partial occlusion Distraction Motion blur

D. Comaniciu, V. Ramesh, P. Meer: Kernel-Based Object Tracking TPAMI, 2003

Recall geometric transform invariance…

http://comaniciu.net/Papers/KernelTracking.pdf

Mean Shift tracking example

D. Comaniciu, V. Ramesh, P. Meer: Kernel-Based Object Tracking TPAMI, 2003

http://comaniciu.net/Papers/KernelTracking.pdf

Drawback: scale estimation

http://www.youtube.com/watch?v=RG5uV_h50b0

Scale changes

• The basic MS does not adapt to scale

Problem:

The scale of
the target
changes in

time

The scale (h)
of the kernel

must be
adapted

Solution:

Run
localization 3

times with
different size

Choose the size that
achieves maximum

similarity

D. Comaniciu, V. Ramesh, P. Meer: Kernel-Based Object Tracking TPAMI, 2003

http://comaniciu.net/Papers/KernelTracking.pdf

Alternating scale-shift estimation

Use interleaved spatial/scale mean-shift

Spatial stage:

Fix σ and look
for the best x

Scale stage:

Fix x and look
for the best σ

Iterate stages until
convergence of x and σx

σ

x0

σ0

xopt

σopt

Tracking through scale space

Fixed-scale

Tracking through scale space

± 10% scale
adaptation

Some recent scale-space advances

Robust Scale-Adaptive Mean-Shift for Tracking

Vojir, Noskova, Matas, SCIA, 2013

MS tracking by information fusion

D. Comaniciu: Nonparametric Information Fusion for Motion Estimation,CVPR, 2003

http://comaniciu.net/Papers/FusionForMotion.pdf

Mean-shift was primarily used for clustering

Comaniciu & Meer, Mean Shift: A Robust ApproachToward
Feature Space Analysis, TPAMI 2002

Kung and Fowlkes, Recurrent Pixel Embedding for Instance Grouping, CVPR2018
<GitHub>

MS tracker that capitalizes on deep
learning has not yet been explored to its full potential.
Opportunity for new research?

RGB clustering by MS Clustering of deep features by deep MS

https://github.com/aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping

References

You should read to properly implement MS tracker:

• D. Comaniciu, V. Ramesh, P. Meer: Kernel-Based Object Tracking, TPAMI, Vol. 25,

No. 5, 564-575, 2003

• Read at least Sections 2-4.

If you want to learn more:

• Collins , Yanxi, Online Selection of Discriminative Tracking Features, TPAMI 2005 (code and videos)

• Collins, Mean-shift blob tracking through scale space, CVPR, 2003

• Tomaš Vojir, Jana Noskova, Jiri Matas, Robust Scale-Adaptive Mean-Shift for Tracking, SCIA, 2013

• D. Comaniciu: Nonparametric Information Fusion for Motion Estimation, CVPR, 2003

http://comaniciu.net/Papers/KernelTracking.pdf
http://www.cs.stanford.edu/~roozbeh/cs7495/report.html
http://comaniciu.net/Papers/FusionForMotion.pdf

Acknowledgment

• Some parts of images and slides have been taken from the following

presentation: Yaron Ukrainitz & Bernard Sarel, Mean Shift – Theory

and applications

• Check it out, it’s a nice presentation

