Univerza v Ljubljani v i C @ S

L sualgnitive
Ejé ystemslab

Advanced CV methods
Tracking patches

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme,
Fakulteta za raunalnistvo in informatiko,

Univerza v Ljubljani

Consider motion of patches of pixels

©@® Select a region of interest
L s, | inthe first frame.

Assuming the object will not move by too much in consecutive
frames, re-localize the object (target) in each frame.

;

.
xi_1 -
-1

A high-level view of tracking

* Assume some model of the target (e.g., template)

* Assume estimated position in the previous time-step

New input image

Estimated position

,| Target
localization

Visual model | X
« ‘e
of target. Wt Jae

Target localization

* Correspondence problem Extract a template T (x)

Previous
image

New
image I(x)

The goal is to align a template image T (x) to an input image I(x).
How to measure the quality of the alignment?

Similarity measure

* Quantify the similarity between the visual model and the target region
e Straight-forward: compare pixel intensities

* “Sum of squared differences” (SSD)

ssd(x,y) = Z Z (T'(k,l) —I(x+ k,y+ l))g

bt Template Region Sq. diff.

Y.sq.dif f =113563

Naive localization

* Greedy approach: calculate the SSD for all displacements and select the
point where similarity is maximal — the distance is the smallest!

But usually we can assume our starting
position is “close” to the right one!

Can we do better?

* How would we find the bottom of a valley?

Decide which way is up/down
Move downward by some step
Continue until the bottom is
reached

Starting poi

Mathematically: Known as “the Gradient descent”

Gradient descent

* Gradient points toward increase of f.

mI i Direction in which we
o L f(x) OX should be moving to
T " get to the bottom:
7 L Initial guess of x f
6 L a
- |
4 + X0
. L OX
2 o=
fm) , |
! | | | | | | | | | ! ! >

1 2 3 4 s5Mg 7 8 9 1011 12

Gradient descent

* Move in the opposite direction of the gradient

' of
10 + —_
9 + f(x)
8 +
s L Initial guess of x X1 = Xot+?
6 4=
5 +
4 +
3 4
2 4+
fm) . |
! | | | | | | | | | ! ! >

1 2 3 4 s5Mg 7 8 9 1011 12

Gradient descent

* Move in the opposite direction of the gradient

A
~"
r B I
10 + 1 o DX{ e
9 + f(x) X,
8 4
7 L Initial guess of x
z [Continue with
a L this recursion.
3 4
2 du
fm) . |
! | | | | 1 1 | | | | | >

1. 2 3 4 s5Mg 7 8 9 10 11 12

Gradient descent

* Asimple recursive algorithm
@S-,Lqré cCL Some X,

> =h

—t—t———1—1t—11

-
o

N W s O O ~N © ©O

T€ U)-Pex,_,) lce
exit loo])

fim) | |

Straight-forward in n-D

e A2D example
X—’-[X,“)(&]r

o

x‘ -1 5 -2

a3 -3

2D similarity map Visualize as a 3D surface

Straight-forward in n-D

* [nitialize x

* lterate: Xy = xy_1 — alf -

o

x‘ -1 5 -2

a3 -3

2D similarity map Visualize as a 3D surface

The tools we’ve got so far

* We know how to minimize a cost function E(p4, P2, .., PN),

w.r.t. p, where
p = |p1, 0o, ...,pN]Tare parameters of our model.

* We know how to compute E(pq,p;).

Displacement models

* Introduce a warp function W/(x) that warps image onto a template — we
can think about the warp as a transformation model W (x; p) that takes coordinate
X and transforms it according to parameters p.

1 (X) | (W(X;p))

Example: p = 0 Example: p ...translation to left

Region Template Region Template
- E(p) = Z (WX p)) - T(x)) j -

Displacement models

* Simple example:
Translation to left-up in x by 5 and y by 10.

Warped image Original image

Displacement models

e Popular parametric 2D transformations

A
y / snnllarl ty proj ectlve
translation

)

Euchdean afﬁne

Richard Szeliski: Computer Vision — algorithms and applications (Section 2.1.2)

http://szeliski.org/Book/

Displacement models

* Rigid body motion
* Rotate, translate

X'=Xcosp,—ysinp,+p, p=|p, pz’ps]T
y'=Xsin p, +Yycos p, + p,

e Compact matrix notation for W(x; p):

. . X
W (x:p) = {X} _ {XC_OS p,—ysinp, + pz} _ {Cés(pl) —sin(p,) pz} y
y xsinp, +ycosp, +p; | [sin(p,) cos(p,) P, 1

Displacement models

e Affine motion

e Rotation, translation, scale, shear -
X'= PX+ P,y + Py T
V'= P X+ DY+ P p =[Py Pz, Pas Py Ps, Ps]

e Compact matrix notation for W(x; p):

- . y

W(X.p){X} PXH YR | [P P P
| | LPX+PsY+Ps| | Pe Ps Pe_

How many free parameters?

* Degrees of freedom DoF (dim. of p)

Transformation Matrix # DoF Preserves Icon
translation [I | t } 2 orientation
2x3
rigid (Euclidean) [R ‘ t L . 3 lengths O
X
similarity [sR ‘ t } 4 angles O
2% 3
affine [A]2 \ 6 parallelism D
X
projective [H L ; 8 straight lines [‘
oI X

Richard Szeliski: Computer Vision — algorithms and applications (Section 2.1.2)

http://szeliski.org/Book/

Tracking as gradient ascent/descent

Lucas-Kanade tracker

* |nitially published in 1981 as an image registration method*.
* Improved many times, most importantly by Carlo Tomasi?.

e Also part of the OpenCV library.

» Single algorithm and results published in a premium journal3.

e Qur derivations will follow3

e See Section 2 in that paper.

* If you're interested: See other Sections for improvements of LK and the results obtained by these.

1 Lucas and Kanade. An iterative image registration technique with an application to stereo vision. ICAI, 1981.
2Shi and Tomasi. Good features to track. CVPR, 1994.
3 Baker and Matthews. Lucas-Kanade 20 years on: A unifying framework. [JCV, 2004.

Lucas-Kanade algorithm

* Task: Find the warp W (x; p) parameterized by p, that aligns
the image I(x) with a template T (x).

* For example, the warp could be a translation, i.e.,

W(x;p){;(:gl},

but in general W (x; p) can be arbitrary.

* Problem formulation — Find the parameter values of p that minimize
the image differences:

E(p) = > (1(W(x;p)) - T(x))’

Lucas-Kanade algorithm

E(p) = > (1(W(x;p)) ~T(x))’

Finding minimum of E(p) w.r.t. p is a nonlinear optimization problem.

We therefore assume we have initial guess of p and search for the best increment Ap.

E(p, Ap) = Y (1(W(x; p+ Ap)) —T(X))’

Iterative solution (think of gradient descent):

P < p+Ap ,
D ———

Lucas-Kanade algorithm

* Task: Find the best Ap: Ap =argmin E(p, Ap)
Ap
Would have been easy if

E(p, Ap) = ZX:(| (W(x; p+4p)) = T(X))’ E(p) was quadratic in Ap...

* To simplify, linearize I(W (x;p + Ap)) at p:

(W (x; p+Ap))~ 1 (W (x;p))+VIT W Ap

w{lx} / dp\

I Jacobian
y

‘W(x, p)

Note: This is a gradient of image / evaluated at W (x; p), i.e., VI is
computed in the coordinate frame of I and then warped back into the
coordinate frame of T by the current estimate of the warp W (x, p).

Jacobians of displacement models

* Translation W(x;p)= F} = { e pl}

y y+p;
SV e—y
OX OX op, op,
dW(X;p)_ op, op, B 10 a . o
dpo | oy oy | |0 1 JW)=|op, p,
P O, _ & ot
oo,
X+ P,y +
+ Affine W(X:lf)){Iol N pﬂ
P X+ P, Y +Pg
AW (x;p) _ 222
dp

Some pre-computed Jacobians

Transform Matrix Parameters p Jacobian J
10 4 [10
translation 0 1 1 (te.ty) 0 1
co —Sg tp [1 0 —sgr— coy
Euclidean s Cp ly (te, ty,0) 0 1 cpur— sy
l+a —b 1, 1 0 = —y
similarity b l+a t, (tz,ty.a.b) 01 y =«
1+ ago o1 te 1 0 = yw 0 0
affine aijo l+ain ty (tz. ty, aco. ao1, aio.a11) 1 00 = y
 1+hoo ho hoa |
h1o 1+ hix hi2
projective hoo hoy 1 (hoo. ho1, ha1) (see Section 6.1.3)

Richard Szeliski: Computer Vision — algorithms and applications (6.1.1.)

http://szeliski.org/Book/

Lucas-Kanade algorithm

e Recall the original cost function, i.e.,
E(p, Ap) = > (1(W(X; p+Ap)) — T(x))’
* Plugging the linearized term into the above eq. gives

E(p, Ap) ~ Z(I (W (x;p))+VIT C;—VgAp_T(X))

* Observe that E(p, Ap) is quadratic in Ap which means that
E (p, Ap) can be directly minimized w.r.t. Ap:

8E(p’Ap) =0 Ap=?
OApP

Lucas-Kanade algorithm

OE(p,Ap) _
OApP

Ap = le{vﬂ ZV” [T (x) = [(W(x;p))]

 Where H can be interpreted as a Gauss-Newton approximation of the
Hessian

- z{wdw} {wdﬂ

" dp dp

Lucas-Kanade algorithm

Iterative solution (think of gradient descent):

* @Guess initial parameters p.
* Construct a linearized cost function E (p, Ap) evaluated at p.

* Minimize E(p, Ap) w.r.t. Ap.

« Update parameters: P < p+Ap
‘ Estimate Ap Estimate Ap
Template

Image Deform by p Deform by p + A

LK Implementation

Start with initial p and iterate:

1. Warpimage I(x) with W(x; p) .
2. Warp the gradient image VI(x) with W (x; p) .

. 0w
3. Evaluate the Jacobian — at (x; p) and compute the steepest descent

dp
image V1T 2~
dp
aw] [+ dw
4. Compute the Hessian H =Z{VIT d_p} {VIT E}

]
5. Compute increment Ap:le{Vszﬂ} [T (x) - 1(W(x;p))]
X P

6. Update parameters: P < p+Ap

Until Ap < €
~ (Forthe sake of completeness — no need to learn by heart)

LK Implementation ap=H 3| VIT O [T60-10Wes)]

Image Gradient X Image Gradient Y

Template

Warp Parameters

ﬁ ﬁ—pf'.

Parameter Updates
Ll
il
LL

- l
2 .

06—

Inverse Hessian

H-!

=t < 3
Ap
Hessian Steepest Descent Images

H

SD Parameter Updates
ol

Gradient descent visualization

~

y

: : X X+p,
* Assume that warp is translationonly W(X;p)=| _ |=

Speeded up Lucas Kanade

* The original LK, spends a lot of computation on warping the image and
its derivatives.

* The paper! suggests a simplification.
Original:

E(Ap) = Y (1(W(x; p+Ap)) — T(x))’

New:

E(Ap) = Y (1(W(x; p)) - T(W(x; Ap)))°

“The Inverse Compositional Algorithm” (see paper’, Section 3.2 for details of derivation)

!Baker and Matthews. Lucas-Kanade 20 years on: A unifying framework. 1JCV, 2004.

Lu Cas- Ka na d e I nverseCompositionaIAIgorithm

Pre-compute (!!):

* Evaluate gradient VT of template T (x).
* Evaluate Jacobian dW /dp.

* Compute steepest descent images VV

* Compute hessian H :Z{VTTZ—V:} {VTTZ—V:}

TTW

Iterate:
1. Warpimage I(x) with W(x; p)

2. Compute steepest descent Z{VTTOM} (W p) =T (¥)]
3. Compute increment aAp= H‘lz{VTT }[I(W(x p)) - T (X)]

4. Update parameters W(x;p) < W(x;p) o W(x; Ap)™

(Just for the sake of completeness — no need to learn by heart)

Lucas Kanade ICA Ap=H S VT 8| [IwWiop) -T (0]

Template

&
r—

Warp Parameters Template Gradients Jacobian

W
T8 & u ip

Wix:p)

Parameter Updates]
Inverse Hessian

H!
Hessian

H

SD Parameter Updates

ol

:
- W
VTS

TWixpl— Tix)
Pl J

What are good features to track?

* Which patches (templates) T(x) should we consider?

e Remember this discussion at LK flow estimation?

Let’s look at the maths...

* Which patches (templates) T(x) should we consider?

* The ones for which we can solve the updates
aw |
Ap = H ‘1Z{VIT E} [T (x)— 1(W(x;p))]

e Stability depends on whether the Hessian is invertible

H :;{VITMT {vﬂdﬂ}

dp dp

What are good features to track?

* Assume that the warp function is pure translation

W (X;p) = (X+ p,, y+P,) dw(x;p) |1 O
dp 0 1
Note that the Jacobian
H = Z Vi T dW VI T aw is not necessarily constant in general,
dp dp but for the translational motion

it is constant!

e Then we can show that the H is in fact

_ , _
Z L, Z ley This is used in the Harris corner detector! |
H=| : o O
) ML SV

5 X"y - y | “e(\‘\ Se\

 Means that corners make good features to track. \\

Tracking patches

Without checking similarity With checking similarity
with the initial patch with the initial patch

Approach: remove a patch if similarity to
initial template drops below a threshold.

People counting by clustering KLT

Vincent Rabaud and Serge Belongie, Counting Crowded Moving Objects [pdf] [poster] CVPR 2006, New York, NY.

http://vision.ucsd.edu/~vrabaud/papers/CountingCrowdedMovingObjects_CVPR06.pdf
http://vision.ucsd.edu/~vrabaud/papers/CountingCrowdedMovingObjects_Poster_CVPR06.pdf
http://www.cvpr.org/2006/

Tracking facial points by LK ICA

Hobust AAM

>200 frames per second

[1] lain Matthews and Simon Baker, "Active Appearance Models Revisited," International Journal of Computer Vision, Vol. 60, No. 2, 2004
[2] Simon Baker, lain Matthews, Jing Xiao, Ralph Gross, Takeo Kanade, and Takahiro Ishikawa, "Real-Time Non-Rigid Driver Head Tracking for
Driver Mental State Estimation," 11th World Congress on Intelligent Transportation Systems, October, 2004.

http://www.ri.cmu.edu/pub_files/pub4/matthews_iain_2004_2/matthews_iain_2004_2.pdf
http://www.ri.cmu.edu/pub_files/pub4/baker_simon_2004_4/baker_simon_2004_4.pdf

Motion stabilization and stitching

* LK can be used for motion compensation

 We can consider the entire image as template

* Choose a pseudo-perspective transform for W(x;p)

(pseudo-perspective is approximation for perspective)

Motion stabilization and stitching

e LK can be used for motion compensation

 We can consider the entire image as template

SaadAli, Mubarak Shah, COCOA -Tracking in Aerial Imagery, ISR, 2006

Tracking by sparse flow

* Apply Lucas Kanade (pyramidal) to estimate sparse flow.

* Fit a parametric model to the flows, e.g., affine, by least squares or
RANSAC.

For least squares and RANSAC, see Richard Zseliski:
Computer Vision — algorithms and applications (6.1.1-6.1.4)

http://szeliski.org/Book/

Tracking by a grid of flow vectors

* Apply a grid of LK flows and estimate reliability of each computed flow

vector.

Tomas Vojir and Jiri Matas, “The Enhanced Flock of Trackers”. Registration and Recognition in
Images and Videos - Studies in Computational Intelligence, Springer 2014. (bib)

http://cmp.felk.cvut.cz/~vojirtom/publications/lncs2014_v2.pdf
http://cmp.felk.cvut.cz/~vojirtom/publications/vojir-lncs2014.bib

LK combination with deep features

 “Recent” work proposed learning deep features such that the cost function
optimized in LK tracker becomes smooth with a large attraction perimeter

r

—Convs5 feature |
—Ilearned Convs feature

N w

normalized cost

o

Wang et al., Deep-LK for Efficient Adaptive Object Tracking, ICRA2018 [Youtube link] x-shift

https://arxiv.org/abs/1705.06839
https://www.youtube.com/watch?v=cqZ_TNMKjyQ

References on LK

Recommended read:

* Baker and Matthews. Lucas-Kanade20 years on: A unifying framework. 1JCV, 2004.

e At least the section on basic Lucas&Kanade optimization

If you are interested in some milestone papers:

* Lucas and Kanade. An iterative image registration technique with an application to
stereo vision. ICAIl, 1981.

 Shi and Tomasi. Good features to track. CVPR, 1994.

