
Advanced CV methods
Tracking patches

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme,
Fakulteta za računalništvo in informatiko,

Univerza v Ljubljani

Assuming the object will not move by too much in consecutive
frames, re-localize the object (target) in each frame.

Select a region of interest
in the first frame.

k-1

k

k+1

Consider motion of patches of pixels

A high-level view of tracking

• Assume some model of the target (e.g., template)

• Assume estimated position in the previous time-step

Target
localization

New input image

Visual model
of target.

t+1

Estimated position

t+1

𝑘

𝑘 + 1

Target localization

• Correspondence problem

The goal is to align a template image 𝑇(𝒙) to an input image 𝐼 𝒙 .
How to measure the quality of the alignment?

Localized target

Extract a template 𝑇(𝒙)

I(𝒙)

Previous
image

New
image 𝐼(𝑥)

Similarity measure

• Quantify the similarity between the visual model and the target region

• Straight-forward: compare pixel intensities

• “Sum of squared differences” (SSD)

RegionTemplate Sq. diff.

-()2=

σ𝑠𝑞. 𝑑𝑖𝑓𝑓 =113563

SSD map SSD map

Naïve localization

• Greedy approach: calculate the SSD for all displacements and select the

point where similarity is maximal – the distance is the smallest!

But usually we can assume our starting
position is “close” to the right one!

Starting point

Can we do better?

• How would we find the bottom of a valley?

1. Decide which way is up/down
2. Move downward by some step
3. Continue until the bottom is

reached

Mathematically: Known as ”the Gradient descent”

??

Gradient descent

• Gradient points toward increase of 𝑓.

f

x





0
|x

f

x


−


Direction in which we
should be moving to
get to the bottom:

Initial guess of 𝑥

𝑥0

Gradient descent

• Move in the opposite direction of the gradient

Initial guess of 𝑥

f

x




𝑥1 = x0+?

𝑥0

Gradient descent

• Move in the opposite direction of the gradient

Continue with
this recursion.

Initial guess of 𝑥

f

x





Gradient descent

• A simple recursive algorithm

Initial guess of 𝑥

Straight-forward in n-D

• A 2D example

2D similarity map Visualize as a 3D surface

Straight-forward in n-D

2D similarity map Visualize as a 3D surface

• Initialize 𝒙0

• Iterate: 𝒙𝑘 = 𝒙𝑘−1 − 𝛼𝛻𝑓ȁ 𝒙𝑘−1

The tools we’ve got so far

• We know how to minimize a cost function 𝐸(𝑝1, 𝑝2, … , 𝑝𝑁),

w.r.t. 𝒑, where

𝒑 = 𝑝1, 𝑝2, … , 𝑝𝑁
𝑇are parameters of our model.

• We know how to compute 𝐸(𝑝1, 𝑝2).

𝒑𝟏

𝒑𝟐

𝑝1

𝑝2

𝐸(𝑝1, 𝑝2)

𝐸(𝑝1, 𝑝2)

Displacement models

• Introduce a warp function W(x) that warps image onto a template – we

can think about the warp as a transformation model 𝑊(𝒙; 𝒑) that takes coordinate

𝒙 and transforms it according to parameters p.

(W(x;p))I()I x

Region Template

?
=

Region Template

?
=

Example: 𝑝… translation to left

()
2

E() (W(x;p)) T(x)
x

p I= −

Example: 𝑝 = 0

tu

Displacement models

• Simple example:

Translation to left-up in 𝑥 by 5 and 𝑦 by 10.

Warped image Original image

Displacement models

• Popular parametric 2D transformations

Richard Szeliski: Computer Vision – algorithms and applications (Section 2.1.2)

http://szeliski.org/Book/

Displacement models

• Rigid body motion

• Rotate, translate

• Compact matrix notation for 𝑊(𝒙; 𝒑):

1 1 2

1 1 3

' cos sin

' sin cos

x x p y p p

y x p y p p

= − +

= + +

1 1 2 1 1 2

1 1 3 1 1 3

cos sin p cos(p) sin(p)'
(x;p)

sin cos p sin(p) cos(p)'
1

x
x p y p px

W y
x p y p py

 
− + −      

= = =      + +        

 1 2 3, ,
T

p p p p=

Displacement models

• Affine motion

• Rotation, translation, scale, shear

• Compact matrix notation for 𝑊(𝒙; 𝒑):

1 2 3

4 5 6

'

'

x p x p y p

y p x p y p

= + +

= + +

1 2 3 1 2 3

4 5 6 4 5 6

p'
(x;p)

p'
1

x
p x p y p p px

W y
p x p y p p py

 
+ +      

= = =      + +        

 1 2 3 4 5 6, , , , ,
T

p p p p p p p=

How many free parameters?

• Degrees of freedom DoF (dim. of p)

Richard Szeliski: Computer Vision – algorithms and applications (Section 2.1.2)

http://szeliski.org/Book/

• Lucas-Kanade tracker

• Initially published in 1981 as an image registration method1.

• Improved many times, most importantly by Carlo Tomasi2.

• Also part of the OpenCV library.

• Single algorithm and results published in a premium journal3.

• Our derivations will follow3

• See Section 2 in that paper.

• If you’re interested: See other Sections for improvements of LK and the results obtained by these.

1 Lucas and Kanade. An iterative image registration technique with an application to stereo vision. ICAI, 1981.
2 Shi and Tomasi. Good features to track. CVPR, 1994.
3 Baker and Matthews. Lucas-Kanade 20 years on: A unifying framework. IJCV, 2004.

Tracking as gradient ascent/descent

Lucas-Kanade algorithm

• Task: Find the warp 𝑊(𝒙; 𝒑) parameterized by 𝒑, that aligns

the image 𝐼(𝒙) with a template 𝑇(𝒙).

• For example, the warp could be a translation, i.e.,

but in general 𝑊(𝑥; 𝑝) can be arbitrary.

• Problem formulation – Find the parameter values of 𝒑 that minimize

the image differences:

()
2

E() (W(x;p)) T(x)
x

p I= −

1

2

(x;p) ,
x p

W
y p

+ 
=  

+ 

Lucas-Kanade algorithm

Finding minimum of 𝐸 𝒑 w.r.t. 𝒑 is a nonlinear optimization problem.

We therefore assume we have initial guess of p and search for the best increment Δ𝒑.

Iterative solution (think of gradient descent):

()
2

E(p,) (W(x;p)) T(x)
x

p I p = +  −

()
2

E() (W(x;p)) T(x)
x

p I= −

p p p +

Δ𝑝

Lucas-Kanade algorithm

• Task: Find the best Δ𝒑:

• To simplify, linearize 𝐼(𝑊(𝑥; 𝑝 + Δ𝑝)) at 𝑝:

()
2

E(p,) (W(x;p)) T(x)
x

p I p = +  −

arg min (p,)
p

p E p


 = 

()() ()(); ; TI W x p p I W x p
dW

I p
dp

+  + 

Note: In the paper of Baker&Mathews (Lucas-Kanade 20 years on…), the gradient is defined as the row vector, so the notation does not include transpose!

Jacobian

Would have been easy if
𝐸(𝑝) was quadratic in Δ𝑝…

x

y

I
I

I

 
 =  

 

Note: This is a gradient of image I evaluated at 𝑊(𝑥; 𝑝), i.e., ∇𝐼 is
computed in the coordinate frame of 𝐼 and then warped back into the
coordinate frame of T by the current estimate of the warp 𝑊 𝑥, 𝑝 .

𝑊 𝑥, 𝑝

Jacobians of displacement models

• Translation

• Affine

2

1p
(x;p)

xx
W

y py

+  
= =    +   

1

2

2

1

1 0(x;)

0 1

x x

p pdW

y yd

p p

  
    
 = =  
    

   

p

p

1 3 5

2 4 6

p
(x;p)

p

p x p y
W

p x p y

+ + 
=  

+ + 

0 0 1 0(x;p)

0 0 0 1

x ydW

x ydp

 
=  
 

???

1 1

1

2

1

2

1

(W)

m m

n

n

n

f f

p p

f f

p pJ

f f

p p

  
  
 
  

  =
 
 
 
  
   

Some pre-computed Jacobians

Richard Szeliski: Computer Vision – algorithms and applications (6.1.1.)

http://szeliski.org/Book/

Lucas-Kanade algorithm

• Recall the original cost function, i.e.,

• Plugging the linearized term into the above eq. gives

• Observe that 𝐸(p, Δ𝑝) is quadratic in Δ𝑝 which means that

𝐸(p, Δ𝒑) can be directly minimized w.r.t. Δ𝒑:

()()
2

E(p,) ; T(x)T

x

dW
p I x p

d
W I p

 
  − 

 
+ 

p

()
2

E(p,) (W(x;p)) T(x)
x

p I p = +  −

E(p,)
0

p

p

 



?p =

Lucas-Kanade algorithm

• Where H can be interpreted as a Gauss-Newton approximation of the

Hessian

E(p,)
0

p

p

 




 1 (x) I(W(x;p))T

x

T

dW
IH

d
p T−  

 −  =
 


p

T

x

T TdW dW
H I I

d d

   
=     

   


p p

Lucas-Kanade algorithm

• Guess initial parameters 𝒑.

• Construct a linearized cost function 𝐸(p, Δ𝒑) evaluated at 𝒑.

• Minimize 𝐸(𝑝, Δ𝒑) w.r.t. Δ𝒑.

• Update parameters:

Iterative solution (think of gradient descent):

p p p +

Template
Image Deform by 𝒑

Estimate Δ𝒑

Deform by 𝒑 + Δ𝐩

Estimate Δ𝒑

…

LK Implementation
Start with initial p and iterate:

1. Warp image 𝐼(𝒙) with 𝑊(𝒙; 𝒑) .

2. Warp the gradient image 𝛻𝐼(𝒙) with 𝑊(𝒙; 𝒑) .

3. Evaluate the Jacobian
𝜕𝑊

𝜕𝒑
at 𝒙; 𝒑 and compute the steepest descent

image 𝛻𝐼𝑇
𝑑𝑊

𝑑𝒑
.

4. Compute the Hessian .

5. Compute increment .

6. Update parameters:

Until Δ𝒑 < ϵ

T

x

T TdW dW
H I I

d d

   
=     

   


p p

 1 (x) I(W(x;p))T

x

T

dW
IH

d
p T−  

 −  =
 


p

p p p +

(For the sake of completeness – no need to learn by heart)

LK Implementation  1 (x) I(W(x;p))T

x

T

dW
IH

d
p T−  

 −  =
 


p

Stays fixed during
Iterations.

T

x

T TdW dW
H I I

d d

   
=     

   


p p

T dW
I

d


p

 (x) I(W(x;p))

T

T

x

dW
I T

d

 
 − 
 


p

Baker and Matthews. Lucas-Kanade 20 years on: A unifying framework. IJCV, 2004.

Gradient descent visualization

• Assume that warp is translation only

Video curtesy of Tomaš Svoboda

2

1p
(x;p)

xx
W

y py

+  
= =    +   

Speeded up Lucas Kanade

• The original LK, spends a lot of computation on warping the image and

its derivatives.

• The paper1 suggests a simplification.

1Baker and Matthews. Lucas-Kanade 20 years on: A unifying framework. IJCV, 2004.

()
2

E() (W(x;p)) T(W(x; p))
x

p I = − 

“The Inverse Compositional Algorithm” (see paper1, Section 3.2 for details of derivation)

()
2

E() (W(x;p)) T(x)
x

p I p = +  −

Original:

New:

Lucas-Kanade InverseCompositionalAlgorithm

Pre-compute (!!):

• Evaluate gradient 𝛻𝑇 of template 𝑇(𝑥).

• Evaluate Jacobian 𝑑𝑊/𝑑𝒑.

• Compute steepest descent images 𝛻𝑇𝑇𝑑𝑊
𝑑𝒑

.

• Compute hessian

Iterate:

1. Warp image 𝐼(𝒙) with 𝑊(𝒙; 𝒑)

2. Compute steepest descent

3. Compute increment

4. Update parameters

T

x

T TdW dW
H T T

d d

   
=     

   


p p

 1 I(W(x;p)) (x)
x

T

T dW
TH

d
p T−  

 −  =
 


p

 I(W(x;p)) (x)

T

x

T dW
T T

d

 
 − 
 


p

1(x;p) W(x;p) W(x;)W p − 

(Just for the sake of completeness – no need to learn by heart)

Lucas Kanade ICA  1 I(W(x;p)) (x)
x

T

Tp H
W

T T
p

−  
 −  =

 


Stays fixed during
Iterations.

Baker and Matthews. Lucas-Kanade 20 years on: A unifying framework. IJCV, 2004.

What are good features to track?

• Which patches (templates) T(x) should we consider?

• Remember this discussion at LK flow estimation?

1

2
3

4

5

Let’s look at the maths…

• Which patches (templates) T(x) should we consider?

• The ones for which we can solve the updates

• Stability depends on whether the Hessian is invertible

 1 (x) I(W(x;p))T

x

T

dW
IH

d
p T−  

 −  =
 


p

T

x

T TdW dW
H I I

d d

   
=     

   


p p

What are good features to track?

• Assume that the warp function is pure translation

• Then we can show that the 𝑯 is in fact

• Means that corners make good features to track.

1 2(;) (x , y p)W p= + +x p 1 0(;)

0 1

dW

d

 
=  
 

x p

p

2

2

x x y

x y y

I I I

H
I I I

 
 

=
 
  

 

 
x x

x x

T

x

T TdW dW
H I I

d d

   
=     

   


p p

Note that the Jacobian
is not necessarily constant in general,
but for the translational motion
it is constant!

This is used in the Harris corner detector!

Tracking patches

Without checking similarity
with the initial patch

With checking similarity
with the initial patch

Video curtesy of Tomaš Svoboda

Approach: remove a patch if similarity to
initial template drops below a threshold.

People counting by clustering KLT

Vincent Rabaud and Serge Belongie, Counting Crowded Moving Objects [pdf] [poster] CVPR 2006, New York, NY.

http://vision.ucsd.edu/~vrabaud/papers/CountingCrowdedMovingObjects_CVPR06.pdf
http://vision.ucsd.edu/~vrabaud/papers/CountingCrowdedMovingObjects_Poster_CVPR06.pdf
http://www.cvpr.org/2006/

Tracking facial points by LK ICA

[1] Iain Matthews and Simon Baker, "Active Appearance Models Revisited," International Journal of Computer Vision, Vol. 60, No. 2, 2004
[2] Simon Baker, Iain Matthews, Jing Xiao, Ralph Gross, Takeo Kanade, and Takahiro Ishikawa, "Real-Time Non-Rigid Driver Head Tracking for
Driver Mental State Estimation," 11th World Congress on Intelligent Transportation Systems, October, 2004.

>200 frames per second

http://www.ri.cmu.edu/pub_files/pub4/matthews_iain_2004_2/matthews_iain_2004_2.pdf
http://www.ri.cmu.edu/pub_files/pub4/baker_simon_2004_4/baker_simon_2004_4.pdf

Motion stabilization and stitching

• LK can be used for motion compensation

• We can consider the entire image as template

• Choose a pseudo-perspective transform for W(x;p)

(pseudo-perspective is approximation for perspective)

(x;p)W

Motion stabilization and stitching

• LK can be used for motion compensation

• We can consider the entire image as template

SaadAli , Mubarak Shah, COCOA -Tracking in Aerial Imagery, ISR, 2006

Tracking by sparse flow

• Apply Lucas Kanade (pyramidal) to estimate sparse flow.

• Fit a parametric model to the flows, e.g., affine, by least squares or

RANSAC.

t t+1

For least squares and RANSAC, see Richard Zseliski:
Computer Vision – algorithms and applications (6.1.1-6.1.4)

http://szeliski.org/Book/

Tracking by a grid of flow vectors

• Apply a grid of LK flows and estimate reliability of each computed flow

vector.

Tomas Vojir and Jiri Matas, “The Enhanced Flock of Trackers“. Registration and Recognition in
Images and Videos - Studies in Computational Intelligence, Springer 2014. (bib)

http://cmp.felk.cvut.cz/~vojirtom/publications/lncs2014_v2.pdf
http://cmp.felk.cvut.cz/~vojirtom/publications/vojir-lncs2014.bib

LK combination with deep features

• “Recent” work proposed learning deep features such that the cost function

optimized in LK tracker becomes smooth with a large attraction perimeter

Wang et al., Deep-LK for Efficient Adaptive Object Tracking, ICRA2018 [Youtube link]

https://arxiv.org/abs/1705.06839
https://www.youtube.com/watch?v=cqZ_TNMKjyQ

References on LK

Recommended read:

• Baker and Matthews. Lucas-Kanade20 years on: A unifying framework. IJCV, 2004.

• At least the section on basic Lucas&Kanade optimization

If you are interested in some milestone papers:

• Lucas and Kanade. An iterative image registration technique with an application to

stereo vision. ICAI, 1981.

• Shi and Tomasi. Good features to track. CVPR, 1994.

