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Video analysis

e Video is a sequence of images

* Pixel is located in space (x,y) and time (t): I(x, y, t)

- I(x,y,1)
B |




Motion field

Motion perception

* Minimum number of images to analyze a video is 2

e (Calculate displacements over pair of frames
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Motion field examples

Dense motion field Sparse motion field

S PR

http://www.cs.cmu.edu/~saada/Projects/CrowdSeg http://www.youtube.com/watch?v=ckVQrwyYIjAs
mentation/



Application: surveillance, multimedia

Tracking with occlusions via Graph cuts, N. Papadakis and A. Bugeau. TPAMI 2011
(Code available)



https://sites.google.com/site/nicolaspapadakis/Home/trackinggc/TrackingGC.zip?attredirects=0

Motion perception: Motion field

e The motion field is a projection of 3D motion to image
[ Horn&Schunck ]

CCD Kgi motion vector

2D motion

field

vector J+
u=(u.,v)

How do constant motions appearfrom
In this case, the 2D motion

field vector is equal to optical flow vector far away and how do they appear close by?
(See your notes)




Depth and motion parallax

« Relation between 3D motion size r and its 2D projection size '

 Assume a parallel translation




Depth and motion paralax
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of 3D point.




Optical flow

* Definition: optical flow is a velocity field in the image which transforms
one image into the next image in a sequence [ Horn&Schunck ]

frame #1 flow field frame #2

e |deally optical flow equals motion field

e Careful: the apparent motion is not always induced by the actual motion!




Optical flow: problem definition

e Optical flow introduced by Horn&Schunk (1981)

e Task: Estimate the pixel motion from time t to t+1 given the

intensity measurements at pixels

1010100100
100000007
10000100

frame t

@D

Horn and Schunck, "Determining Optical Flow," Artificial Intelligence, 17 (1981), pp. 185-203




Optical flow: problem definition

 How to find the correct displacement?

5 — [5337 5y7 5t]T

1010100000
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frame t fram

@D

Assumptions required to constrain the space of solutions!




Assumption 1: Brightness constancy

* Intensity of a point does not change during motion

0 = [0z, 0y, 0¢]t
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Assumption 2: Small displacements

* The displacement vector § = [, d,,, &;]? is sufficiently small.

e Actually, assume that the length ||[0z, dy]|| is small.

N
$+5:cay+5 7t+5t)

1010100100

1000000
1101010000

frame t

@D




Derivation at single pixel

* See your notes




Optical flow constraint equation

* Optical flow constraint where we set 0; = 1:
IQZ‘(X’I,)(S:L‘ + Iy(Xi)(Sy -+ It(Xi) =0

* This is a line equation with parameters (dy, 0, ):

5, — —dayg It
Y I, % I,
5’9
— 1 | he li
T, — __Any point on the line

satisfies the constraint! X




This is the aperture problem

Component parallel to the edge unknown...

Percieved motion




Barber poll illusion

The aperture problem!

http://www.sandlotscience.com/Ambiguous/Barberpole_lllusion.htm http://en.wikipedia.org/wiki/Barber's_pole




This is the aperture problem

Component parallel to the edge unknown...

Percieved motion




This is the aperture problem

Component parallel to the edge unknown...




This is the aperture problem

Component parallel to the edge unknown...

\ Actual motion




Solving the aperture problem

* More equations per pixel are required!

* Assumption 3: Local motion coherency constraint -- assume that

neighboring pixels have equal displacements.

2

/

A
X',.

X

0 = [0z, 0y, 0¢]"

Farther assumte 7%::'[‘

-Craueg cele gaw’J /qu
discrefe -hwe&’felb?

ne, ol =1 #4¢.

Lucas and Kanade “An Iterative Image Registration Technique with an Application to Stereo Vision” |JCAl '81 pp. 674-679




Solving the aperture problem

* X; ...i-th pixel coordinates; discrete time-steps (0; = 1)

I:(x:)0, + I,(x;)0, = —1(x;)1

e Consider asmall 3 X 3 window:

XX X Iw(Xl)(Sx + Iy(X1)5y — —It(Xl)
TR = Lt )b, = —Lx)
P 4B4 B4 [ (x9)0s + Iy (x9)dy = —1I;(x9)




~ Solve the aperture problem

e Rewrite into a matrix form:

Ip(x1) I,(x1 - Ii(x1)

In(x2)  1y(x2) 5. I;(x2)
z z [ J, ] -

I.(x9) 1Iy(x9) i I (x9)

"~ gx2 B ~ ogxa




Solve the aperture problem

Problem: We have more equations than unknowns

o~

Ad=b —— d=argmin||[Ad-Db|J?
d

Least-squares solution by pseudo inverse!

h ad=Aab /(ar)*

SQuhkRE
d=(rEY A b




Structure of the solution

* |n principle one could compute d = (ATA)_lATb at each pixel.
e But this can be done much more efficiently!

* Possible to work out the equations independently

for 6, and o,, at each pixel!

* START HERE:
We can show that AT Ad = AT b equals to (show for home exercise!):

L) D L)L (%) H > LK)
 Diae O 06) 201, 06)’ DIRNCHIRCH]




Solve the aperture problem

> LX)

_ Zi=1:9 Ix(xi)2 Zi:l:g Ix(xi) | y(Xi)_ {5)(}
_Zizl:Q Iy(xi)lt(xi)_

Zi=1:9 IX(Xi)Iy(Xi) Zi:1:9 Iy(xi)2 B

* We will drop x; and index i in interest of compact notation:




Solve the aperture problem

* Compact notation:

> e [,
20 20 18] [

 Now invert:




Derive the inverse yourself

* Equation from previous slide:

20 2,

20 20

e Recall the matrix inversion rule:

A —
C




Now write the solution of d

* Applying the inversion rule:

Eﬂz<ZI$><ZI;>—<ZIXU>2[—%iy %tw:%ﬂ

e Results in the following solution:

o =_(Zlyz)zlxlt+(lely)zly|t rSgYea’t\.
X (Z IXZ)Z Iy2 —(Z ley)2 —‘\(\athq’?\
s QLY L =GO ...\N’\\ - ee 50O

A Sy ST We



Implementation by example

* The following video will be considered as an example




Implementation by example

* How to compute I, (z,y,t), I,(z,y,t), [;(x,y,t)? 5 ;(Z(g)Z)gﬁ(%z'x'y)%lyh
' IO 12 - 1)
e Start with an easy one: [; SE02IA) R0 31%9) M}

a (ZIXZ)Z:IyZ_(Z:|><Iy)2

It x,y,t

Temporal derivative is approximated by difference between consecutive images.



Implementation by example

* How to compute I, (z,y,t), I,(z,y,t), I;(z,y,t)?

* Approximate spatial derivatives I, I,, by convolution
[(z,y,1)

If this is a mystery to you, check Prince’s book, Sec. 13.1.3. or Szeliski, Sec. 4.2.1.




Implementation — putting it together
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A note on summations

* Recall that the equations require summing over neighboring pixels

_—(ZI DL+ LD L
> QLA - L)
PO M AL0 2 ) MM
% QLA - 1L,

* This can be trivially implemented by convolution, e.g., for Y12

—Z’]—ﬁv)
lC”
:::l X :Z—e = I/( _ {/ he/‘f‘éorloo




Back to Waffle the terrible
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Flow computation reliability

* Flow cannot be computed just at any point

e Recall that the following equation is implicitly solved:

2 e [

_lely >/ 116, _Zlylt_
ATAd=A'b

When is this system solvable?

e ATA must not be singular, (cannot invert it otherwise)

— Eigenvalues A, and A, of ATA must not be too small

e ATA has to be well conditioned

— Ratio A,/ A, must not be to great
(A, = the larger eigenvalue)



Eigenvalues of ATA

« AT Ais a covariance matrix of local gradients:

= ATA =

e Same as in the Harris corner detection!

Note: If you are unfamiliar with the Harris corner detection,
see Prince (Sec. 13.2.2) or Szeliski (Sec. 4.1.1)

A'A=




Eigenvalues of ATA

Autocorrelation

—large gradient in one direction
—large A, small A,




Eigenvalues of ATA

Autocorrelation

— gradients with small magnitude
—small A, small A,



Eigenvalues of ATA

Autocorrelation

— large gradient magnitudes
—large A, large A,




Small motion assumption

e Lucas-Kanade works well only for small motions.

* If an object moves fast, the small motion assumption is violated.

e 2x2 or 3x3 convolution kernels fail to estimate the spatio-temporal

derivatives.




Small motion assumption violated

f large

In areas o

Fails i
motion

-

* Apply pyramid representations to compute larger optical flow vectors.




What is an image pyramid?

* From one level to the next: smooth image by Gaussian filter
and reduce by half

See Szeliski, Sec. 8.1.1. and Sec. 3.5.3.




Why is pyramid useful?

e LK flow assumes small displacements!

Displacement by 3 pixels.
What is the amount of this
displacement at the lowest level?




Improve flow by iterations

* Iteratively solve Lucas Kanade:

e C(Calculate rough estimate at low resolution

* Increase resolution and gradually improve flow estimates

Gauss pyramid Gauss pyramid




Example of warp application

Frame t Frame t+1




Example of using a pyramid with 2 levels

Frame t+1 Flow at level 1

Estimate the flow by LK

Level 1

Upsample
flow by 2x

Estimate the residual flow by LK

Flow atlevel0 |
5@ =M 4 50




Improved estimates of derivatives

 Smooth temporal derivative by a small Gaussian:

ft — g(ﬂfay) * [y

* Average spatial derivative in frame t and t+1:
(mathematically incorrect, but could help in some situations)

< >é\|>

— %(Ix(a:,y,t) T I:B(xvyat o 1))
%(Iy(:c, y,t) + I,(x,y,t + 1))

* lterate between warping and flow estimation at a single level of the pyramid.



ithout using the pyramids

Fails in areas of large
motion
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By using the py
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Lucas-Kanade with Pyramids
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Back to Waffle the terrible

Simple derivatives Better derivatives

Without pyramid

With pyramid




Back to Waffle the terrible

Simple derivatives, Better derivatives,
without pyramid with pyramid
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Recap on the Lucas Kanade flow

* Brightness constancy assumption:
I(x)=1(x+6)
* Small displacement assumption:
I(x+0)=~I(x)+VI'JI§
e Optical flow equation (underdetermined system):
e LK solution: neighboring points move similarly, so we can solve for
the displacements via least squares.

e Large motions violate the small motion assumption -> Pyramids!

. Pai attention to imﬁlementation efficienci S



Further info on LK flow estimation

* B.D. Lucas and T. Kanade “An Iterative Image Registration Technique with an
Application to Stereo Vision” 1JCAl '81
Pay attention to pages: pp. 674-679




