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Video analysis

• Video is a sequence of images

• Pixel is located in space (x,y) and time (t): 𝐼(𝑥, 𝑦, 𝑡)



Motion perception: Motion field

• Minimum number of images to analyze a video is 2

• Calculate displacements over pair of frames

…
Video



Motion field examples

Dense motion field Sparse motion field

http://www.cs.cmu.edu/~saada/Projects/CrowdSeg
mentation/

http://www.youtube.com/watch?v=ckVQrwYIjAs



http://www.cs.cmu.edu/~saada/Projects/CrowdSegmentation/

Tracking with occlusions via Graph cuts, N. Papadakis and A. Bugeau. TPAMI 2011
(Code available) 

Application: surveillance, multimedia

https://sites.google.com/site/nicolaspapadakis/Home/trackinggc/TrackingGC.zip?attredirects=0


Motion perception: Motion field

• The motion field is a projection of 3D motion to image

3D motion vector

2D motion 
field
vector

[ Horn&Schunck ]

How do constant motions appear from
far away and how do they appear close by?
(See your notes)

In this case, the 2D motion 
field vector is equal to optical flow vector



Depth and motion parallax
• Relation between 3D motion size 𝑟 and its 2D projection size 𝑟′

• Assume a parallel translation



Depth and motion paralax

Motion vector length
is inversely
proportional to depth
of 3D point.

http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/motion/motion.html

𝑟′

𝑓𝑟
= 𝑍−1



Optical flow

• Definition: optical flow is a velocity field in the image which transforms 

one image into the next image in a sequence  [ Horn&Schunck ]

• Ideally optical flow equals motion field

• Careful: the apparent motion is not always induced by the actual motion!

+
=

frame #1 frame #2flow field

=



Optical flow: problem definition

• Optical flow introduced by Horn&Schunk (1981)

• Task: Estimate the pixel motion from time t  to  t+1 given the 

intensity measurements at pixels

frame t frame t+1

Horn and Schunck, "Determining Optical Flow," Artificial Intelligence, 17 (1981), pp. 185-203



Optical flow: problem definition

• How to find the correct displacement?

frame t frame t+1

?

Assumptions required to constrain the space of solutions!



• Intensity of a point does not change during motion

Assumption 1: Brightness constancy

frame t frame t+1



• The displacement vector                              is sufficiently small.

• Actually, assume that the length                    is small.

Assumption 2: Small displacements

frame t frame t+1



Derivation at single pixel

• See your notes



Optical flow constraint equation

• Optical flow constraint where we set 𝛿𝑡 = 1:

• This is a line equation with parameters (𝛿𝑥 , 𝛿𝑦):

𝒙𝑖
Any point on the line
satisfies the constraint!



This is the aperture problem

Percieved motion

slide credit: Kristen Grauman

Component parallel to the edge unknown...



Barber poll illusion

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm http://en.wikipedia.org/wiki/Barber's_pole

The aperture problem!



This is the aperture problem

Percieved motion

slide credit: Kristen Grauman

Component parallel to the edge unknown...



This is the aperture problem

slide credit: Kristen Grauman

Component parallel to the edge unknown...



This is the aperture problem

Actual motion

slide credit: Kristen Grauman

Component parallel to the edge unknown...



Solving the aperture problem

• More equations per pixel are required!

• Assumption 3: Local motion coherency constraint -- assume that 

neighboring pixels have equal displacements.

Lucas and Kanade “An Iterative Image Registration Technique with an Application to Stereo Vision” IJCAI '81 pp. 674-679 



Solving the aperture problem

• 𝒙𝑖 … i-th pixel coordinates; discrete time-steps (𝛿𝑡 = 1)

• Consider a small 3 × 3 window:



• Rewrite into a matrix form:

Solve the aperture problem

9x2

2x1

9x1



Solve the aperture problem

Problem: We have more equations than unknowns

Least-squares solution by pseudo inverse!



Structure of the solution

• In principle one could compute                                           at each pixel.

• But this can be done much more efficiently!

• Possible to work out the equations independently 

for 𝛿𝑥 and 𝛿𝑦 at each pixel!

• START HERE: 

We can show that 𝑨𝑇𝑨𝒅 = 𝑨𝑇𝒃 equals to (show for home exercise!): 
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Solve the aperture problem

• We will drop 𝒙𝑖 and index 𝑖 in interest of compact notation:
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Solve the aperture problem

• Compact notation:

• Now invert:
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Derive the inverse yourself

• Equation from previous slide:

• Recall the matrix inversion rule:
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Now write the solution of 𝒅

• Applying the inversion rule:

• Results in the following solution: 
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Implementation by example

• The following video will be considered as an example 

Video: “Waffle the terrible”, Youtube

Frame tFrame t+1



Implementation by example

• How to compute                                                           ?

• Start with an easy one:

Temporal derivative is approximated by difference between consecutive images.
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Implementation by example

• How to compute                                                           ?

• Approximate spatial derivatives              by convolution

=

If this is a mystery to you, check Prince’s book, Sec. 13.1.3. or Szeliski, Sec. 4.2.1.
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Implementation – putting it together



A note on summations

• Recall that the equations require summing over neighboring pixels:

• This can be trivially implemented by convolution, e.g., for ∑𝐼𝑦
2:
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Frame t Frame t+1 Flow (𝛿𝑥, 𝛿𝑦)

x

Back to Waffle the terrible

𝛿𝑥 𝛿𝑦



Flow computation reliability

• Flow cannot be computed just at any point

• Recall that the following equation is implicitly solved:
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When is this system solvable?

• ATA must not be singular, (cannot invert it otherwise)

– Eigenvalues l1 and l2 of ATA must not be too small

• ATA has to be well conditioned

– Ratio l1/ l2 must not be to great 
(l1 = the larger eigenvalue)



Eigenvalues of ATA

• 𝐴𝑇𝐴 is a covariance matrix of local gradients:

• Same as in the Harris corner detection!

• Note: If you are unfamiliar with the Harris corner detection, 

see Prince (Sec. 13.2.2) or Szeliski (Sec. 4.1.1)
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Eigenvalues of ATA

– large gradient in one direction

– large λ1, small λ 2

Autocorrelation
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Eigenvalues of ATA

– gradients with small magnitude

– small λ1, small λ 2

Autocorrelation
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Eigenvalues of ATA

– large gradient magnitudes

– large λ1, large λ 2

Autocorrelation
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Small motion assumption

• Lucas-Kanade works well only for small motions.

• If an object moves fast, the small motion assumption is violated.

• 2x2 or 3x3 convolution kernels fail to estimate the spatio-temporal 

derivatives.



Small motion assumption violated

• Apply pyramid representations to compute larger optical flow vectors. 

Slika: Khurram Hassan-Shafique



What is an image pyramid?

• From one level to the next: smooth image by Gaussian filter 

and reduce by half

See Szeliski, Sec. 8.1.1. and Sec. 3.5.3. 



Why is pyramid useful?

• LK flow assumes small displacements!

Displacement by 3 pixels.
What is the amount of this 
displacement at the lowest level?

1/2

1/2



Improve flow by iterations

• Iteratively solve Lucas Kanade:

• Calculate rough estimate at low resolution

• Increase resolution and gradually improve flow estimates

Bouguet , J. I., Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the algorithm, IC,2000



Example of warp application
Frame t Frame t+1

Flow Warped Frame t+1



Example of using a pyramid with 2 levels

Frame t Frame t+1

Level 1

Level 0

R
ed

u
ce

 2
x

R
ed

u
ce

 2
x

Warp the image

Flow at level 1
Estimate the flow by LK

𝛿(1)

Estimate the residual flow by LK 𝛿𝑟
(1)

Upsample
flow by 2x

𝛿𝑢
(1)

Flow at level 0

𝛿(0) = 𝛿𝑢
(1)

+ 𝛿𝑟
(1)

𝛿(0)

+



Improved estimates of derivatives

• Smooth temporal derivative by a small Gaussian:

• Average spatial derivative in frame t and t+1:

(mathematically incorrect, but could help in some situations)

• Iterate between warping and flow estimation at a single level of the pyramid.



Without using the pyramids

Image: Khurram Hassan-Shafique



By using the pyramids

Image: Khurram Hassan-Shafique



Back to Waffle the terrible

Simple derivatives Better derivatives
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Back to Waffle the terrible

Simple derivatives,
without pyramid

Better derivatives,
with pyramid



Recap on the Lucas Kanade flow

• Brightness constancy assumption:

• Small displacement assumption:

• Optical flow equation (underdetermined system):

• LK solution: neighboring points move similarly, so we can solve for 

the displacements via least squares.

• Large motions violate the small motion assumption -> Pyramids!

• Pay attention to implementation efficiency



Further info on LK flow estimation

• B.D. Lucas and T. Kanade “An Iterative Image Registration Technique with an 
Application to Stereo Vision” IJCAI '81 
Pay attention to pages: pp. 674-679


