Univerza v Ljubljani

Advanced CV methods Introduction

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani

About the lecturer

- Matej Kristan
- Visual Cognitive Systems Laboratory (ViCoS)
- Contact me via:
 - Email: <u>matej.kristan@fri.uni-lj.si</u>
 - E-classroom or MS Teams
- Homepage: <u>http://www.vicos.si/People/Matejk</u>
- Other resources:
 - Sicris: <u>a brief bibliography at Sicris</u>
 - Researchgate: <u>https://www.researchgate.net/profile/Matej_Kristan</u>
 - Google scholar: http://scholar.google.com/citations?user=z_8FrEYAAAAJ&hl=en

Research interests

0. Industrial R&D

2. Robotic vision

1. Deep structured networks

What will this course be about?

• Motion perception and Tracking

• Currently hot topics in CV as well as industry

A huge application potential

Application examples

SaadAli, Mubarak Shah ISR2006

Čehovin, Kristan and Leonardis, IEEE TPAMI 2013

Perazzi et al., CVPR 2016

Kristan et al. CVIU 2009

Many Challenges in Visual Object Tracking

- Short-term Visual Object tracking challenges:
 - <u>VOT2013</u>-VOT2021, VOT2022?
- Long-term Visual Object tracking challenge 2014
- Multi object tracking challenge (MOT2021)
- Video segmentation challenge YouTube VOS
- <u>Change detection challenge</u> 2011-2014
- KITTI auto-moto challenge: <u>car and pedestrian tracking</u>
- <u>VideoNet</u>

... and much more

Advanced Methods in Computer Vision

DETAILS ABOUT THE COURSE

Main topics

- 1. Low-level motion estimation techniques
- 2. Tracking regions by generative models
- 3. Tracking regions by discriminative models
- 4. Bayesian recursive filtering
- 5. Deep-learning-based trackers
- 6. Long-term tracking
- 7. Visual tracking performance evaluation

• Programming

(Python experience preferred)

• Basic algebra and vector/matrix calculus

(basic, but good foundations)

Basic probability and statistics

(basic, but good foundations)

• Basics in signal processing / computer vision desired

(will provide the references to the relevant literature)

Preliminaries on deep learning

- Deep learning is an elementary methodology in computer vision
- Towards the end of semester a lecture on trackers based on CNN
- You are required to be familiar with general neural networks and have a grasp of the basic ideas behind the CNNs.
- If you're not familiar, familiarize yourself:

CS231n: Convolutional Neural Networks for Visual Recognition

http://cs231n.stanford.edu/schedule.html

- Lecture 4 (basics of neural nets)
- Lecture 5 (convolutional neural networks)
- Lecture 6 Lecture 9 (training the networks and some relevant architectures)

Lectures

- First-hand insights on the topics
 - Ask questions!
- Will cover main concepts and go over the necessary derivations
- Attend the lectures and make your own notes!
- Literature:
 - Lecture slides (void of derivations)
 - Recordings of last year's lectures available on MS Stream
 - Major conference or journal papers

Practicum (Lab)

- Starts in 3rd week of semester (Lab channel)
- Learn theory by implementing it!
- Python
- Complete 5 assignments (start in 3rd week)
 - Implement what you learned at lectures
 - Two-week assignments, brief directions, individual work required
 - Not guided, consultations available. Use the opportunity to ask questions!
 - More information at the Lab (Alan will give you details)

dr. Alan Lukežič Doc. dr. Luka Čehovin Zajc

The A, B and C of the course

- A: 5 lab assignments / practicum
 - Further details at the lab
- B: a few homework assignments
 - To help you follow the lectures
 - Only the first one will be graded
- C: Written exam
 - Mainly theory + basic computations

NOTES:

Positively pass all assignments in (A) – required Pass the written exam (C) – required Homework (B) – not required, but desired Final grade: A*0.6 + C*0.4 (first HW will contribute to the points in the assignment 1)

Where to find state-of-the-art?

Three top journals of CV: (Source: Cobiss.si)

- IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE TPAMI
- IEEE TIP ; Pattern Recognition ; IJCV

Top conferences:

(Source: Microsoft academic research)

CVPR - Computer Vision and Pattern Recognition

ICCV - International Conference on Computer Vision

ECCV - European Conference on Computer Vision

FGR - IEEE International Conference on Automatic Face and Gesture Recognition

BMVC - British Machine Vision Conference

WACV - Workshop on Applications of Computer Vision

ACCV - Asian Conference on Computer Vision

Some textbooks/handbooks

- General CV: Computer Vision Models
 - (freely available)
 - Prince: Linear algebra: Appendix C

- Probability: Bayesian Reasoning and Machine Learning
 - (freely available)
 - Vectors, matrices, gradients: Appendix A

- Some readily computed matrix-vector derivatives
 - The matrix cookbook (<u>freely available</u>)

Today – getting on the same page

- Have a look at linearization
 - Most of you should be familiar with this, but I will not assume that

- Get some homework (4 exercises) !! POINTS COUNT FOR ASIGNMENT 1!!
 - Turn in the homework by next week (see the e-classroom for exact date)
 - Submit via e-classroom

• Promise more computer vision fun in the following lectures 😳

Advanced computer vision methods

LINEARIZATION IN A NUTSHELL

A task often encountered

- Have a parametric model.
- Find parameters of the model to best fit the data.

• A fitting example:

By how much should be expand/shirk Stan to best fit Olio?

Parameterized Stan's face

- Stan's width parameterized by a scale factor p,
 - i.e., the new image width is $W_{new} = W_{old} \cdot p$

• Now we need to compare Stan's warped face to Olio's face...

Parameterized Stan's face

Difference f(p) between Stan's face deformed by p and Olio's face depends on the scale *parameter p*. (p = 1.5) f(p = 2.3) = 0.4f(p)f(p = 0.7) = 0.99f(p = 1.2)

Parameterized Stan's face

- Often we will want to use the function f(p) in our computations, but working with nonlinear functions can complicate calculations.
- Often we will be considering values of f(p) only in the neighborhood of p_{0} :
- Solution: Find a local linear approximation at some p_0

General problem emerges

- Given a nonlinear function f(x(p)) parameterized by some parameters $p = [p_1, p_2, ..., p_n]$, what is the linear approximation at a neighborhood of parameters p_0 ?
- Linearize by Taylor expansion (ignore higher-order terms).
- See notes that you took at lectures.

Multivariate gradient

Linearization by Taylor expansion

- To brush up on Taylor expansion and linearization, see "<u>Bayesian</u> <u>Reasoning and Machine Learning</u>" Appendix A, Section 29.2
- For explanation of the gradient and partial derivatives, specifically, equation (29.2.4) for linearization by Taylor expansion.
- Interactive examples of multivariate

derivatives: <u>http://mathinsight.org/linear_appr</u> <u>oximation_multivariable</u>

