
N-body problem
UROŠ LOTRIČ

Introduction
Physics, chemistry

Problem description
◦ Force between two bodies
◦ Ԧ𝑟𝑖𝑗 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗) = 𝑥𝑖 − 𝑥𝑗 , 𝑦𝑖 − 𝑦𝑗 , 𝑧𝑖 − 𝑧𝑗

◦ 𝑟𝑖𝑗
2 = 𝑥𝑖𝑗

2 + 𝑦𝑖𝑗
2 + 𝑧𝑖𝑗

2

◦ 𝐹𝑖𝑗 = 𝐺
𝑚𝑖𝑚𝑗

𝑟𝑖𝑗
2

Ԧ𝑟𝑖𝑗

𝑟𝑖𝑗
= (𝐹𝑖𝑗𝑥, 𝐹𝑖𝑗𝑦 , 𝐹𝑖𝑗𝑧) = (𝐺

𝑚𝑖𝑚𝑗

𝑟𝑖𝑗
2

𝑥𝑖𝑗

𝑟𝑖𝑗
, 𝐺

𝑚𝑖𝑚𝑗

𝑟𝑖𝑗
2

𝑦𝑖𝑗

𝑟𝑖𝑗
𝐺

𝑚𝑖𝑚𝑗

𝑟𝑖𝑗
2

𝑧𝑖𝑗

𝑟𝑖𝑗
)

◦ Total force on body 𝑖

◦ 𝐹𝑖𝑥 = 𝐺𝑚𝑖 σ𝑗≠𝑖

𝑚𝑗

𝑟𝑖𝑗
2

𝑥𝑖𝑗

𝑟𝑖𝑗
, 𝐹𝑖𝑦 = 𝐺𝑚𝑖 σ𝑗≠𝑖

𝑚𝑗

𝑟𝑖𝑗
2

𝑦𝑖𝑗

𝑟𝑖𝑗
, 𝐹𝑖𝑧 = 𝐺𝑚𝑖 σ𝑗≠𝑖

𝑚𝑗

𝑟𝑖𝑗
2

𝑧𝑖𝑗

𝑟𝑖𝑗

◦ 𝐹𝑖𝑥 = 𝐺𝑚𝑖 σ𝑗

𝑚𝑗

𝑅𝑖𝑗
2

𝑥𝑖𝑗

𝑅𝑖𝑗
, 𝐹𝑖𝑦 = 𝐺𝑚𝑖 σ𝑗

𝑚𝑗

𝑅𝑖𝑗
2

𝑦𝑖𝑗

𝑅𝑖𝑗
, 𝐹𝑖𝑧 = 𝐺𝑚𝑖 σ𝑗

𝑚𝑗

𝑅𝑖𝑗
2

𝑧𝑖𝑗

𝑅𝑖𝑗

◦ Smoothing 𝑅𝑖𝑗
2 = 𝑟𝑖𝑗

2 + 𝜀2

◦ when 𝑟𝑖𝑗 = 0, 𝑥𝑖𝑗 = 𝑦𝑖𝑗 = 𝑧𝑖𝑗= 0

◦ Prevents division by zero when 𝑖 = 𝑗

Introduction
Problem description
◦ Body movement

◦ 𝑎𝑖𝑥 =
𝐹𝑖𝑥

𝑚𝑖
, 𝑎𝑖𝑦 =

𝐹𝑖𝑦

𝑚𝑖
, 𝑎𝑖𝑧 =

𝐹𝑖𝑧

𝑚𝑖

◦ 𝑎𝑖𝑥 = 𝐺 σ𝑗

𝑚𝑗

𝑅𝑖𝑗
2

𝑥𝑖𝑗

𝑅𝑖𝑗
, 𝑎𝑖𝑦 = 𝐺 σ𝑗

𝑚𝑗

𝑅𝑖𝑗
2

𝑦𝑖𝑗

𝑅𝑖𝑗
, 𝑎𝑖𝑧 = 𝐺 σ𝑗

𝑚𝑗

𝑅𝑖𝑗
2

𝑧𝑖𝑗

𝑅𝑖𝑗

◦ 𝑠𝑖𝑥 = 𝑠𝑖𝑥 + 𝑣𝑖𝑥Δ𝑡 +
1

2
𝑎𝑖𝑥Δ𝑡

2 , 𝑠𝑖𝑦 = 𝑠𝑖𝑦 + 𝑣𝑖𝑦Δ𝑡 +
1

2
𝑎𝑖𝑦Δ𝑡

2, 𝑠𝑖𝑧= 𝑠𝑖𝑧 + 𝑣𝑖𝑧Δ𝑡 +
1

2
𝑎𝑖𝑧Δ𝑡

2

◦ 𝑣𝑖𝑥 = 𝑣𝑖𝑥 + 𝑎𝑖𝑥Δ𝑡 , 𝑣𝑖𝑦 = 𝑣𝑖𝑦 + 𝑎𝑖𝑦Δ𝑡 , 𝑣𝑖𝑧 = 𝑣𝑖𝑧 + 𝑎𝑖𝑧Δ𝑡

Parallelization concepts
Per body
◦ N bodies, N interactions: 𝑡𝑠 𝑁 = 𝜒𝑁2 = 𝑂(𝑁2)

◦ Parallelization: 𝑡𝑝 𝑁, 𝑃 = 𝑂
𝑁2

𝑃
+ 𝜅(𝑁, 𝑃) at 𝑃 tasks

Per force
◦ As 𝐹𝑖𝑗 = −𝐹𝑗𝑖, the number of work can be halved

◦ More complex scheduling scheme

Experiment setup
Technologies
◦ OpenMP

◦ OpenCL

◦ OpenMPI

Timing
◦ Per iteration

◦ Start/end data transfer from host

Runs
◦ 8, 16, 32, …, 65536 bodies

◦ 5 per configuration

OpenMP
Code overview
◦ nbody-mp.c

Cores
◦ 1, 2, 4, 8, … 64

◦ Expected quadratic behaviour

◦ Time per interaction calculation
◦ 1 core: no thread creation and synchronization

◦ 𝜒𝑀𝑃 = 2 ⋅ 10−8𝑠

OpenMP
Cores
◦ Time decreases with power
◦ Theory: −1, experiment −0.925

◦ Theory does not take into account thread
creation and synchronization (barriers)

◦ For small problem sizes computing on large
number of cores does not pay of

OpenMP
Speedup and efficiency

◦ 𝑆 𝑁, 𝑃 =
𝑡𝑠 𝑁

𝑡𝑝 𝑁,𝑃
, 𝐸 𝑁, 𝑃 =

𝑆 𝑁,𝑃

𝑃

◦ Speedup increases with number of tasks

◦ Large problem sizes are computed more efficiently
◦ Even 32768 bodies is not enough to compute on 64 cores

OpenCL
Code overview
◦ nbody-cl.c

◦ Two kernels
◦ nbody-cl-0.cl

◦ Works directly with global memory

◦ nbody-cl-1.cl

◦ Copies body locations to local
memory before computation

OpenCL
Work-group size
◦ Tested sizes
◦ 32, 64, 128, 256, 512, 1024

◦ Comment
◦ Low values: a lot of barriers

◦ High values:
not enough thread resources

◦ K40m:

◦ 2880 PE → 192 PE per CE

OpenCL
Time per iteration
◦ Expected quadratic behaviour

◦ First coefficient is 𝜒
◦ Kernel 0: 𝜒 = 1.72 ⋅ 10−11𝑠 , kernel 1: 𝜒 = 1.56 ⋅ 10−11𝑠

◦ Kernel 1 is better

◦ Computation on GPU is approx. 1000 times faster compared to CPU

◦ For small problem sizes
linear behaviour
◦ GPU is not fully utilized

◦ For full utilization needs
at least 15 ⋅ 128 = 1920 workers

OpenCL
Time per iteration

◦ Speedup: 𝑆 𝑁 =
𝑡𝐾𝑒𝑟𝑛𝑒𝑙 0 𝑁

𝑡𝐾𝑒𝑟𝑛𝑒𝑙 1 𝑁

◦ Analysis
◦ Kernel 0 randomly reads data from global memory

◦ Kernel 1 has two barriers to support coalesced reads

◦ For very small problems coalesced reading is irrelevant

◦ For very large problems speedup stabilizes at approx. 10%

◦ GPU caching helps Kernel 0 for small problem sizes,
less than 1024 particles

◦ A lot of workers, better latency hiding for
large problem sizes

OpenCL
Data transfer
◦ To GPU + From GPU
◦ 2x7xNxW: (to GPU + from GPU) x [mass + 3 positions + 3 velocities) x bodies x bytes per value

◦ Bandwidth approaches 2GB/s
◦ PCI-E 3.0 supports

transfers up to 10 GB/s

◦ Problem size is to small to
reach maximal bandwidth

OpenMPI
Code review
◦ nbody-mpi.c

◦ Group communication

Experiment
◦ 1, 2, 4, 8, 16, 32, 64, 128 cores

◦ 1 or 2 nodes

◦ Work is equally distributed among nodes and sockets

OpenMPI
Time per iteration, 1 node
◦ Computation + Allgather
◦ At least 512 bodies for 64 cores

OpenMPI
Time per iteration, 1 node

◦ Speedup and efficiency

◦ Smaller efficiency (75% of OpenMP efficiency)

◦ OpenMPI needs bigger problems for better efficiency

◦ Makes sense to combine OpenMP and OpenMPI

OpenMPI
Time per iteration, 2 nodes
◦ Time difference per iteration: 𝑡1 𝑛𝑜𝑑𝑒 − 𝑡2 𝑛𝑜𝑑𝑒𝑠
◦ Slightly better on 2 nodes
◦ Only communication between two nodes

◦ Quality of protocol for data exchange on the same node

◦ With 2 nodes less problems with cache and more
processor resources per task (2 cores per FP)

bodies 1 2 4 8 16 32 64 128

128 -0,0000534 0,000028 2,88E-05 -0,00027 -0,00035 -0,00042

256 -4,66E-05 9,64E-05 3,18E-05 -0,00014 -0,0003 -0,00131

512 0,000558 3,08E-05 -6,8E-06 -8,9E-05 -0,00019 -0,00045

1024 -3,86E-05 9,34E-05 0,000568 0,000741 -0,00039 -0,0002

2048 0,0090488 0,000676 0,000314 -0,00274 0,000367 0,000976

4096 -0,0007266 -0,01835 0,000502 0,007516 0,003891 0,00309

8192 0,0051994 -0,00328 0,060123 -0,00023 0,007614 0,006723

16384 0,0290196 -0,18183 -0,1526 0,071758 0,04376 0,027287

32768 -0,6567244 0,019261 0,021433 0,504166 -0,48074 0,211331

Green: better time on 2 nodes

OpenMPI
Theoretical estimation of communication costs

◦ Bcast: log2 𝑃 𝜆 +
𝑁

𝛽

◦ Scatter/gather/allgather: σ𝑖=1
log2 𝑃(𝜆 +

𝑁

2𝑖𝛽
) = 𝜆 log2 𝑃 +

𝑁

𝛽
⋅
𝑃−1

𝑃

OpenMPI
Data transfer, 1 node
◦ 1 x bcast + 1 x scatter + 2 x gather

◦ Linear dependency
◦ Latency 𝜆 = 6.7 ⋅ 10−5𝑠

◦ Bandwidth 𝛽 = 450 𝑀𝐵/𝑠

OpenMPI
Data transfer, 2 nodes
◦ Estimation of latency and bandwidth
◦ Estimates are based on 64/128 tasks and 16384/32768 bodies

◦ OpenIB: 𝜆 ≈ 1.8 ⋅ 10−2, 𝛽 ≈ 11𝑀𝐵/𝑠

◦ Latency prevails, not enough data to transfer

◦ For better estimates

◦ Should test with much larger
data sizes and do more runs

◦ Test communication separately
from computation

Overall comparison
Time per iteration
◦ Best results from each technology

◦ Problem fits OpenCL

◦ OpenMP and OpenMPI have similar results
◦ OpenMPI speedups are approx. 75 % of OpenMP speedups

◦ Hybrid solution

◦ OpenMPI among nodes

◦ OpenMP on a node

Overall comparison
Data transfer
◦ OpenCL is 1000 x faster

◦ OpenMP does have no explicit data transfers

◦ OpenMPI transfers data among processes
even on the same node

Overall comparison
Speedup and efficiency
◦ Relative to single core runs

◦ OpenCL is 30 x faster than OpenMP and OpenMPI

◦ Efficiency drops with number of tasks

◦ OpenMP is more efficient than OpenMPI

Overall comparison
Scalability (iso-efficiency)
◦ 𝑡𝑠 𝑁 = 𝜒𝑁2

◦ 𝑡𝑝 𝑁, 𝑃 = 𝜒
𝑁2

𝑃
+ 𝜆 log2𝑃+

𝑁

𝛽
⋅
𝑃−1

𝑃

◦ 𝑡𝑠 𝑁 ≥ 𝐶 ⋅ 𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑁, 𝑃 = 𝑃 ⋅ 𝜅(𝑁, 𝑃)

◦ 𝜒𝑁2 ≥ 𝐶 ⋅ 𝑃 ⋅
𝑁

𝛽
→ 𝑁 ≥ 𝐶′𝑃

◦ To maintain scalability, the problem size must linearly increase with
the number of parallel tasks

◦𝑀 𝑁 = 𝑚 ⋅ 𝑁

◦
𝑀 𝑁

𝑃
≥

𝑚𝐶′𝑃

𝑃
= 𝐶′′

◦ The memory requirements per task are constant, the problem is well scalable.

Possible improvements
To get more reliable estimates of computing and communication
times
◦ Increase number of iterations

◦ Increase number of runs

Not enough data for reliable estimation of communication
◦ Separate data transfer measurements on larger problem sizes

Add more partial time measurements to the code
◦ Easier to estimate theoretical model

Hybrid solutions
OpenCL + OpenMP
◦ Based on results, there will not be much gain with OpenMP

OpenCL on two GPUs
◦ Each node has two GPUs: could profit a lot

OpenCL + OpenMPI
◦ MPI to distributed work among nodes
◦ One way to do it is to use as many cores as there are GPUs on each node

◦ OpenCL to do computation on all GPUs on a node

	Slide 1: N-body problem
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Parallelization concepts
	Slide 5: Experiment setup
	Slide 6: OpenMP
	Slide 7: OpenMP
	Slide 8: OpenMP
	Slide 9: OpenCL
	Slide 10: OpenCL
	Slide 11: OpenCL
	Slide 12: OpenCL
	Slide 13: OpenCL
	Slide 14: OpenMPI
	Slide 15: OpenMPI
	Slide 16: OpenMPI
	Slide 17: OpenMPI
	Slide 19: OpenMPI
	Slide 20: OpenMPI
	Slide 22: OpenMPI
	Slide 23: Overall comparison
	Slide 24: Overall comparison
	Slide 25: Overall comparison
	Slide 26: Overall comparison
	Slide 27: Possible improvements
	Slide 28: Hybrid solutions

