
HPC: Performance
UROŠ LOTRIČ

Key features to performance
Complexities and varieties of architectures
◦ Data locality and availability of parallel operations

◦ Per machine tuning can be still necessary

Data locality
◦ Reuse of nearby locations in time and space

◦ Important for memory bandwidth and cache usage
◦ Data chunks that can fit in the cache

◦ Organize data structures and memory access to reuse data locality

◦ Access to far memory locations, access to locations power of 2 apart
(reduce cache conflicts on caches with low associativity)

◦ Avoid accessing too many pages at ones (TLB misses)

◦ Align data with cache line boundaries (false sharing)

Key features to performance
Data locality
◦ Hard to do for unknown architecture
◦ parameter to define granularity (manually or by autotuning)

◦ Cache oblivious approach (locality at all scales)

◦ Arithmetic intensity
◦ Ratio computation/data transfer, should be high

◦ Can be done with fusion and tiling

◦ Small granularity can bring more data transfer

Key features to performance
Parallel slack
◦ Extra parallelism available can be beneficial

◦ Software and hardware schedulers get more flexibility to exploit machine
◦ Number of tasks equal to number of functional units is tempting,

whole system can wait for a certain task interrupted by OS

◦ With more parallelism, when problematic task is waiting, another can jump in

◦ Software does not always support such concepts (POSIX)

◦ Calling parallel routines from threads can lead to huge numbers of threads

◦ OS does not know which should run simultaneously

Performance theory
What is performance?
◦ total time, throughput, power, cost, efficiency, scalabiliity

Total time and throughput
◦ total time = wall clock time needed to complete the task

◦ throughput = rate at which tasks are completed
◦ Better throughput may increase total time

(pipeline communication)

◦ response time (web services)

Performance
Total time

black – computation
white – communication

Performance theory
Speedup
◦ Definition
◦ 𝑡𝑠(𝑛) - time for sequential computation

◦ 𝑡𝑝(𝑛, 𝑝) - time for parallel computation

◦ 𝑛 – problem size

◦ 𝑝 – number of workers

◦ Parallel program is composed of
◦ sequential operations, 𝜎 𝑛

◦ parallel operations, 𝜑 𝑛

◦ communication 𝑛, 𝑝

◦ Ideal work distribution

𝑆 𝑛, 𝑝 =
𝑡𝑠(𝑛)

𝑡𝑝(𝑛, 𝑝)

𝑆 𝑛, 𝑝 =
𝑡𝑠(𝑛)

𝑡𝑝(𝑛, 𝑝)
=

𝜎 𝑛 + 𝜑(𝑛)

𝜎 𝑛 + 𝜑 𝑛 /𝑝 + κ(𝑛, 𝑝)

Performance theory
Efficiency
◦ Measures return of hardware investment
◦ tells how well the hardware is used

◦ Usually 0 ≤ 𝐸 𝑛, 𝑝 ≤ 1

◦ Relative and absolute speedup
◦ Absolute when another (better) algorithm is used

◦ Super-linear speedup
◦ most commonly related to better use of cache

◦ cooperation between workers can reduce time (earlier stopping)

𝐸 𝑛, 𝑝 =
𝑡𝑠(𝑛)

𝑝 ∙ 𝑡𝑝(𝑛, 𝑝)
=
𝑆(𝑛, 𝑝)

𝑝

𝐸 𝑛, 𝑝 =
𝜎 𝑛 + 𝜑(𝑛)

𝑝𝜎 𝑛 + 𝜑 𝑛 + 𝑝κ(𝑛, 𝑝)

Performance theory
Price
◦ Efficient programs contribute

to lower computation price

𝑃 𝑛, 𝑝 = 𝑝𝑡𝑝 𝑛 =
𝑝𝑡𝑠 𝑛

𝑆(𝑛, 𝑝)
=

𝑡𝑠 𝑛

𝐸(𝑛, 𝑝)

Performance theory
Amdahl’s law
◦ Portion of sequential operations

◦ Neglects communication

◦ Maximal speedup depends on code, which cannot be parallelized

◦ Assumptions
◦ Constant problem size

◦ Focus of parallelization is to reduce the total time

𝑓 =
𝜎 𝑛

𝜎 𝑛 + 𝜑 𝑛

𝑆 𝑛, 𝑝 =
𝜎 𝑛 + 𝜑(𝑛)

𝜎 𝑛 + 𝜑 𝑛 /𝑝 + κ(𝑛, 𝑝)
≤

𝜎 𝑛 + 𝜑(𝑛)

𝜎 𝑛 + 𝜑 𝑛 /𝑝

𝑆 𝑛, 𝑝 ≤
1

𝑓 + (1 − 𝑓)/𝑝

Performance theory
Amdahl’s law

◦ 𝑛 = 10, 𝜎 𝑛 = 2,𝜑 𝑛 = 8, 𝑓 = 0.2

◦ 𝑆 𝑛, 𝑝 = 1, 1.66, 2.5, 3.33

◦ 𝐸 𝑛, 𝑝 = 1, 0.83, 0.62, 0.41

Performance theory
Gustafson-Barsis’s Law
◦ Speedup should be measured by scaling the problem to the number of

workers, not by fixing the problem size.

◦ Applications scale to exploit better and better computers.

◦ Portion of sequential tasks in parallel computation

◦ Speedup

𝑠 =
𝜎 𝑛

𝜎 𝑛 + 𝜑 𝑛 /𝑝

𝑆 𝑛, 𝑝 ≤ 𝑝 − 𝑠 𝑝 − 1

Performance theory
Gustafson-Barsis’s Law

◦ 𝑛 = 10, 18, 34, 66, 𝜎 𝑛 = 2, 𝜑 𝑛 = 8, 16, 32, 64

◦ 𝑠 = 0.2, constant

◦ 𝑆 𝑛, 𝑝 = 1, 1.8, 3.4, 6.6

◦ 𝐸 𝑛, 𝑝 = 1, 0.9, 0.85, 0.825

Performance theory
Work-span model
◦ Optimistic assumptions in previous speedup computation
◦ all parallelisable work can be ideally parallelized

◦ Tasks presented as direct acyclic graph
◦ Ignore communication and memory access

◦ Assumes greedy scheduling

◦ work, 𝑡𝑠(𝑛) computation time on
sequential machine

◦ span, 𝑡𝑝(𝑛,∞) computation time
on ideal machine

◦ also critical path, step complexity, depth

work=7
span=5 lower limit upper limit

Performance theory
Work-span model
◦ Upper limit on speedup
◦ on ideal machine with greedy scheduling,

adding processors never slows down an algorithm

◦ Lower limit on speedup
◦ to achieve good parallelization f << 1 in Amdahl’s law

◦ Make a replacement 𝑓 = 𝑠𝑝𝑎𝑛/𝑤𝑜𝑟𝑘

◦ lower bound on speedup

◦ Example

𝑆 𝑛, 𝑝 =
𝑡𝑠(𝑛)

𝑡𝑝(𝑛, 𝑝)
≤

𝑡𝑠 𝑛

𝑡𝑝 𝑛,∞
=
𝑤𝑜𝑟𝑘

𝑠𝑝𝑎𝑛

𝑆 𝑛, 𝑝 = min 𝑝,
𝑤𝑜𝑟𝑘

𝑠𝑝𝑎𝑛

1

𝑓 + (1 − 𝑓)/𝑝
>

1

𝑠𝑝𝑎𝑛
𝑤𝑜𝑟𝑘

+
1
𝑝

≤ 𝑆(𝑛, 𝑝)

7

6
= 1.17 ≤ 𝑆 𝑛, 2 ≤ 1.4 =

7

5

Performance theory
Work-span model
◦ Red: upper limit

◦ Yellow: lower limit

◦ Blue: Amdahl, f = 2/7
◦ All but first and last task in example

can be executed in parallel

Parallel slack

◦ 𝑃𝑆 =
𝑆(𝑛,∞)

𝑝
=

𝑡𝑠 𝑛

𝑝 𝑡𝑝 𝑛,∞

◦ In practice PS = 8 works well
1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

2,8

3

0 2 4 6 8

S
p
e
e
d
u
p

P

Performance theory
Scalability (iso-efficiency)
◦ Speedup grows with problem size

◦ Efficiency on more workers can be maintained by increasing the problem size

◦ Total cost of parallelism

𝑆 𝑛, 𝑝 ≤
𝜎 𝑛 + 𝜑(𝑛)

𝜎 𝑛 + 𝜑 𝑛 /𝑝 + κ(𝑛, 𝑝)

𝑆 𝑛, 𝑝 ≤
𝑝(𝜎 𝑛 + 𝜑 𝑛)

𝜎 𝑛 + 𝜑 𝑛 + (𝑝 − 1)𝜎 𝑛 + 𝑝κ(𝑛, 𝑝)

𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = (𝑝 − 1)𝜎 𝑛 + 𝑝κ(𝑛, 𝑝)

Performance theory
Scalability (iso-efficiency)
◦ Efficiency should be maintained

◦ Sequential time

◦ For good scalability efficiency should be constant

◦ 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 increases with 𝑝

◦ Inequality can be satisfied only by increasing problem size

𝐸 𝑛, 𝑝 =
𝑆(𝑛, 𝑝)

𝑝
≤

𝑇𝑠 𝑛

𝑇𝑠 𝑛 + 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑛, 𝑝
=

1

1 +
𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑(𝑛, 𝑝)

𝑇𝑠(𝑛)

𝑇𝑠 𝑛 ≥
𝐸 𝑛, 𝑝

1 − 𝐸 𝑛, 𝑝
𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑛, 𝑝 = 𝐶𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑛, 𝑝

Performance theory
Scalability (iso-efficiency)
◦ Suppose the former relations

gives 𝑛 ≥ 𝑔(𝑝)

◦ With large problem sizes
memory becomes a bottleneck
◦ Memory requirements are

given by function 𝑀(𝑛)

◦ To maintain efficiency,
memory requirements
per worker become 𝑀 𝑔(𝑝) /𝑝

Reduce: theoretical considerations
Reduce with tiling

Use serial algorithm where possible

Do tree-like reduction to reduce communication costs

Process
◦ Break the work to tiles
◦ Operate on tiles separately
◦ Combine partial results from tiles

Serial and tree algorithms
◦ use the same number of application

of the reduce function
◦ Serial algorithm requires less storage

for intermediate results

Reduce: theoretical considerations
Sequential reduction of 𝑛 operands
◦ 𝑛 − 1 reductions

◦ Each invocation of reduce function costs 𝜒

◦ Total execution time 𝑡𝑠(𝑛) = 𝜒 𝑛 − 1

Parallel reduction, 𝑛 = 2𝑘 , 𝑘 ∈ ℕ
◦ Communication costs 𝜆

◦ 𝑛/2 reductions in the first stage can go in parallel,
𝑛/4 in the second stage can go in parallel …
1 reduction in the last stage

◦ altogether we have log2𝑛 stages with 𝑛 − 1 reductions

◦ Total execution time 𝑡𝑝(𝑛) = 𝜒 + 𝜆 log2𝑛

Reduce: theoretical considerations
Parallel reduction, 𝑛 = 2𝑘 + 𝑟, 𝑘, 𝑟 ∈ ℕ
◦ Additional stage with 𝑟 reductions the at the very beginning to come to the

previous scheme

◦ Total execution time 𝑡𝑝(𝑛) = 𝜒 + 𝜆 log2𝑛

Tiled parallel reduction using 𝑝 tasks
◦ Each task performs 𝑛/𝑝 − 1 sequential

reduce operations

◦ Intermediate results are reduced by
three-like scheme in log2𝑝 steps

◦ Total execution time

𝑡𝑝 𝑛, 𝑝 = 𝜒
𝑛

𝑝
− 1 + 𝜒 + 𝜆 log2𝑝

Reduce: theoretical considerations
Scalability (iso-efficiency)
◦ Iso-efficiency condition 𝑡𝑠 𝑛 ≥ 𝐶𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑(𝑛, 𝑝)

◦ 𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑛, 𝑝 = 𝑝 − 1 𝜎 𝑛 + 𝑝𝜅(𝑛, 𝑝)
◦ 𝜎 𝑛 = 0 all tasks can run in parallel

◦ 𝜅(𝑛, 𝑝) = 𝜆 log2𝑝 communication costs

◦ 𝑡𝑠 𝑛 ≥ 𝐶𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝑛, 𝑝 ⇒ 𝜒 𝑛 − 1 ≥ 𝐶𝑝𝜆 log2𝑝 ⇒ 𝑛 ≥ 𝐶′𝑝log2𝑝

◦ According to previous lectures 𝑛 ≥ 𝑔 𝑝 ⇒ 𝑔 𝑝 = 𝐶′𝑝log2𝑝

◦ Memory requirements 𝑀 𝑛 = 𝐾𝑛

◦ Scalability function
𝑀 𝑛

𝑝
≥

𝑀 𝑔 𝑝

𝑝
=

𝐾𝐶′𝑝log2𝑝

𝑝
⇒

𝑀 𝑛

𝑝
= 𝐶′′log2𝑝

◦ Suppose work is doubled and number of processes is doubled

◦ Quantity of work per processors remains equal 𝜒
2𝑛

2𝑝
− 1 = 𝜒

𝑛

𝑝
− 1

◦ One additional reduction step is required 𝜒 + 𝜆 log22𝑝 = 𝜒 + 𝜆 (log2𝑝 + 1)

