HPC: Performance

UROS LOTRIC

Key features to performance

Complexities and varieties of architectures
o Data locality and availability of parallel operations
o Per machine tuning can be still necessary

Data locality
o Reuse of nearby locations in time and space

o Important for memory bandwidth and cache usage
o Data chunks that can fit in the cache
o Qrganize data structures and memory access to reuse data locality

o Access to far memory locations, access to locations power of 2 apart
(reduce cache conflicts on caches with low associativity)

o Avoid accessing too many pages at ones (TLB misses)
o Align data with cache line boundaries (false sharing)

Key features to performance

Data locality
o Hard to do for unknown architecture

o parameter to define granularity (manually or by autotuning)
o Cache oblivious approach (locality at all scales)
o Arithmetic intensity

o Ratio computation/data transfer, should be high
o Can be done with fusion and tiling

o Small granularity can bring more data transfer

Key features to performance

Parallel slack
o Extra parallelism available can be beneficial
o Software and hardware schedulers get more flexibility to exploit machine

o Number of tasks equal to number of functional units is tempting,
whole system can wait for a certain task interrupted by OS

o With more parallelism, when problematic task is waiting, another can jump in

o Software does not always support such concepts (POSIX)
o Calling parallel routines from threads can lead to huge numbers of threads

o OS does not know which should run simultaneously

Performance theory

What is performance?
o total time, throughput, power, cost, efficiency, scalabiliity

Total time and throughput
o total time = wall clock time needed to complete the task
o throughput = rate at which tasks are completed

o Better throughput may increase total time
(pipeline communication)

o response time (web services)

Performance

Total time

Execution time

black — computation
white — communication

Processors

Performance theory

Speedup
o Definition S(n,p) =

o ts(n) -time for sequential computation

ts(n)
tp(n,p)

° t,(n,p) - time for parallel computation
° n—problem size
o p —number of workers

o Parallel program is composed of
o sequential operations, a(n)
o parallel operations, @ (n)

o communication k(n, p) t.(n) an) + o(n)

. oL : S(n)) = =
/deal work distribution p t,(n,p) a(n) +en)/p+xn,p)

Performance theory

Efficiency E(np) = ts(m) _ S(p)
o Measures return of hardware investment)= p-t,(n,p) B p

o tells how well the hardware is used

cUsually0 < E(n,p) <1

o Relative and absolute speedup E(n,p) =
o Absolute when another (better) algorithm is used

o Super-linear speedup

o most commonly related to better use of cache

o(n) + p(n)
po(n) + ¢(n) + px(n,p)

o cooperation between workers can reduce time (earlier stopping)

Performance theory

Price pts() ()

o J[ngilgivevr;tr F;(r)orﬁrams .contri-bute P(n,p) = pt, (n) = Stnp) — E(np)
putation price

Performance theory

Amdahl’s law

> Portion of sequential operations f = o(n)
> Neglects communication a(n) + ¢(n)
S(np) = g(n) + ¢(n) - o(n) + (n)
PP =5 ¥ om)/p + x(n,p) — o) + o) /p

1
R EN Y

o Maximal speedup depends on code, which cannot be parallelized

o Assumptions

o Constant problem size
o Focus of parallelization is to reduce the total time

Performance theory

Amdahl’s law

Serial work

Parallelizable work

_1

=101}

P=1 P=2 P=4 P-8
II IIII IIIIIIII
Y

'n=10,0(n) =2,9¢(n) =8,f =0.2
> S(n,p) = 1,1.66,2.5,3.33
> E(n,p) = 1,0.83,0.62,0.41

Performance theory

Gustafson-Barsis’s Law

o Speedup should be measured by scaling the problem to the number of
workers, not by fixing the problem size.

o Applications scale to exploit better and better computers.

a(n)
o Portion of sequential tasks in parallel computation s =
a(n) +eMm)/p
o Speedup Sn,p)<p—-s(p-1)

Performance theory

Gustafson-Barsis’s Law

=4

P-1 P-

Serial work

Parallelizable work

sl |

2 P
n = 10,18,34, 66,0(n) = 2, 0(n) = 8,16,32, 64

s = 0.2, constant
S(n,p) =1,1.8,3.4,6.6

p-8
E(n,p) = 1,0.9,0.85,0.825

o

(o]

o

o

Performance theory

Work-span model
o Optimistic assumptions in previous speedup computation
o all parallelisable work can be ideally parallelized

o Tasks presented as direct acyclic graph

° |lgnore communication and memory access
o Assumes greedy scheduling

o work, t;(n) computation time on
sequential machine

° span, t,(n, ©) computation time O
on ideal machine

o also critical path, step complexity, depth

work=7
span=>5 lower limit upper limit

Performance theory

Work-span model () _ ts(n) work

o Upper limit on speedu S(n,p) = < =
op o oP g | P t,(n,p) — ty(n,©) span
o on ideal machine with greedy scheduling,
adding processors never slows down an algorithm _ work
. S(n,p) = min| p,
o Lower limit on speedup span
o to achieve good parallelization f << 1 in Amdahl’s law
o Make a replacement f = span/work
o lower bound on speedup 1
o Example > <S(np
Fra—pp san 1=°P)
work ~p

7
=117<5(n2) < 14=¢

Performance theory

Work-span model
o Red: upper limit

3
° Yellow: lower limit 2.8
o Blue: Amdahl, f=2/7 2,6 —
o All but first and last task in example 2,4 //
- S22
can be executed in parallel = /
Q 2
v /
oS /
1,6
Parallel slack ' /
o PS = S(o) _ _ ts(m) 1'2 y/
p p tp(n,0)) y |
o |n practice PS = 8 works well ° ’ I‘; ° °

Performance theory

Scalability (iso-efficiency)
o Speedup grows with problem size
o Efficiency on more workers can be maintained by increasing the problem size

o) +¢(n)
a(n) +¢(n)/p +x(n,p)

S(n,p) <

o Total cost of parallelism
p(ac(n) + ¢(n))

o(n) +em) + (p —1on) + px(n,p)

S(n,p) <

Toverheaa = (p — 1)a(n) + px(n, p)

Performance theory

Scalability (iso-efficiency)
o Efficiency should be maintained

S(n,p) Ts(n) 1
E(n,p) = < =—
p T (n) + Toverhead (n, P) 1 4 —overhead (n,p)
Ts(n)
o Sequential time
T, (Tl) = E(n’ p) T Th d(n; p) =CT rh d(n' p)
S 1—En, p) overhea overhea

o For good scalability efficiency should be constant
° Toverhead iNCreases with p
o Inequality can be satisfied only by increasing problem size

Performance theory

Scalability (iso-efficiency)

o Suppose the former relations
givesn = g(p)

o With large problem sizes
memory becomes a bottleneck

o Memory requirements are
given by function M (n)

o To maintain efficiency,
memory requirements
per worker become M(g(p))/p

Memory needed per processor

Cplogp
Efficiency of the parallel
system must decrease
Cp
Processor’s
memory
capacity
Efficiency of the parallel
system can be maintained
— Clog p
C

Number of processors

Reduce: theoretical considerations

Reduce with tiling
Use serial algorithm where possible
Do tree-like reduction to reduce communication costs

Process DC]CJC] DDDD 000 DCJDC]

o Break the work to tiles 1

o Operate on tiles separately

o Combine partial results from tiles h

Serial and tree algorithms Q) 0 s 0

o yse the same number of application ﬂ
of the reduce function [

o Serial algorithm requires less storage | —
for intermediate results A

Reduce: theoretical considerations

Sequential reduction of n operands
on — 1 reductions
o Each invocation of reduce function costs y

o Total execution time ty(n) = y(n — 1) 0) B0 O 0P O 0
. . k H ”!‘_ﬂ_v"”g":_ ”Q t, i 4 T
Parallel reduction, n = 2%,k € N Q%}% 5
> Communication costs A (,7 [7
> n/2 reductions in the first stage can go in parallel, o e
n/4 in the second stage can go in parallel ... \iét,
1 reduction in the last stage O 0O

o altogether we have log,n stages with n — 1 reductions

> Total execution time t,(n) = (x + A)log,n

Reduce: theoretical considerations

Parallel reduction, n =2 +r,k,r € N

o Additional stage with r reductions the at the very beginning to come to the
previous scheme

> Total execution time t,(n) = (x + A)[log,n|

Tiled parallel reduction using p tasks

o Each task performs [n/p| — 1 sequential
reduce operations

o Intermediate results are reduced by
three-like scheme in [log,p] steps

> Total execution time p
o) = x (|2 = 1) + G+ Dlogapl

Reduce: theoretical considerations

Scalability (iso-efficiency)
o |so-efficiency condition ts(n) = Ctypernead (L P)

° toverhead (D) = (p — 1)o(n) + pr(n,p)
o g(n) =0 all tasks can run in parallel
o k(n,p) = Allog,p] communication costs

° ts(n) = Ctoperneaa(Mp) = x(n — 1) = CpAflog,pl = n = C'plog,p
o According to previous lecturesn = g(p) = g(p) = C'plog,p
o Memory requirements M(n) = Kn

o Scalability function M;n) = M(gp(p)) =X p;ogzp = @ = C"log,p

o Suppose work is doubled and number of processes is doubled

o Quantity of work per processors remains equal y (E—ﬂ — 1) =y ([ﬂ — 1)
o One additional reduction step is required (¥ + A)[log,2p]= (x + A)([log,p] + 1)

