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Introduction
Fork-join pattern (slo. razcepi-združi) can generate high level od 
parallelism

Serial divide-and-conquer algorithms can be efficiently parallelised 
with fork-join pattern
◦ Limits on speedup

◦ Most of the work should go deep into the recursion

Recursive approach to parallelism
◦ Need for work schedulers



Fork-join parallelism
Control flow forks (divides) into multiple flows
◦ One flow turns into more separate flows

◦ Each flow is independent and not constrained to do similar computation

Multiple flows join (combine) latter
◦ After join only one flow continues

Fork-join as directed graph
◦ Example: two tasks B() and C() are executed in parallel and

joined afterwards



Divide-and-conquer
Typical divide-and-conquer pattern
◦ Subproblems must be independent



Divide-and-conquer
Typical divide-and-conquer pattern
◦ Subproblems must be independent

◦ 𝐾 subproblems on 𝑁 levels permits 
up to 𝐾𝑁 parallel tasks

◦ Vast majority of work must be deep in 
the recursion where the parallelism is high

◦ For good performance it is important to 
select proper size of base case
◦ The recursion should not go too deep as scheduling 

overheads will start to dominate

◦ The operations before fork and after join should be fast so 
they do not strangle speedup 



Programming model for fork-join
OpenCL
◦ Patters with a lot of control do not fit well to GPU concepts

MPI
◦ Dynamic changing of number of processors makes it possible 

◦ Not used much as the number of processes on clusters must be determined at 
job submission stage

OpenMP
◦ From version 3.0 onwards has explicit support for tasks



Programming model for fork-join
OpenMP tasks and threads
◦ Tasks are independent units of work
◦ Tasks present additional level of abstraction

◦ Threads are assigned to perform the work of each task
◦ Tasks may be executed immediately

◦ Tasks may be deferred (for example waiting for task dependencies to be fulfilled) 

◦ OpenMP scheduler assigns tasks to threads
◦ Schedulers are implementation specific, not determined by standard

◦ OpenMP 1.0, 2.,0
◦ #pragma omp parallel creates tasks implicitly

◦ OpenMP 3.0
◦ Adds a way to create tasks explicitly 

◦ Tasks can be nested



Programming model for fork-join
OpenMP
◦ #pragma omp task
◦ Indicates that subsequent statements can 

be independently forked as tasks

◦ By default variables are of type firstprivate

◦ Join with #pragma omp taskwait
◦ Waits for all tasks to join

◦ Tasks can only be used inside
a parallel region
◦ Only one thread (master) starts the execution

◦ Example: 

◦ function A and its call from the main routine



Programming model for fork-join
OpenMP
◦ Programmer has some control on forking

◦ #pragma omp task final(condition)
◦ When condition executes to true, new tasks are not generated anymore

◦ The computation is performed inside the calling task



Recursive implementation of map-reduce
Adaptive quadrature
◦ Trapezoidal rule

◦ Compare quadrature on 
two levels

◦ If difference is grater 
than allowed, 
split interval to two halves 
and repeat quadrature 
on each halve 



Recursive implementation of map-reduce
Adaptive quadrature
◦ Serial: adaptquad_ser.c
◦ 1 core: 10.5 s 

◦ Parallel: adaptquad_par.c
◦ Forking of two tasks

◦ 1: 27s, 2: 96s, 4: 211s, 8: 293s

◦ Forking of one task

◦ 1: 18s, 2: 48s, 4: 103s, 8: 176 s



Recursive implementation of map-reduce
Adaptive quadrature
◦ Improved parallel: adaptquad_par2.c
◦ Creation of new tasks is limited

◦ 1: 12.7s, 2: 6.7s, 4: 5.4s, 8: 3.1 s



Choosing base cases
When recursion goes to deep scheduling overheads 
tend to swamp useful work

Two separate base cases
◦ A base case for stopping parallel recursion
◦ Parallel scheduling overheads

◦ A base case for stopping serial recursion
◦ Function call overheads

◦ Completely at different levels
◦ Serial recursion stops at much smaller problem sizes

It is tempting to set the number of base cases 
equal to the number of parallel hardware threads
◦ Scheduler has no flexibility to balance load
◦ Even if problem is well balanced, operating system can cause issues

◦ Better is to over-decompose the problem and create some parallel slack



Complexity of parallel divide-and-conquer
Work and span model
◦ Let 𝐵 and 𝐶 denote tasks

◦ Serial execution time: 𝑡1 𝐵&𝐶 = 𝑡1 𝐵 + 𝑡1 𝐶
◦ Sum of the work along each path

◦ Parallel execution time: 𝑡∞ 𝐵&𝐶 = max(𝑡∞ 𝐵 + 𝑡∞ 𝐶 )
◦ Maximum span of any path

◦ Speedup limit: 𝑆(𝐵&𝐶) = 𝑡1(𝐵&𝐶)/𝑡∞(𝐵&𝐶)

◦ The model ignores overhead for forking and joining

◦ To compute 𝑡1 𝐵&𝐶 and 𝑡∞ 𝐵&𝐶 we need to define recurrence relations 
and solve them
◦ Simpler to get asymptotic solutions than taking into account base cases

◦ Equations are usually similar but differ in constant factors →
asymptotic solutions can significantly differ



Complexity of parallel divide-and-conquer
Majority of problems can be described with relation

◦ 𝑡 𝑁 = 𝑎𝑡
𝑁

𝑏
+ 𝑐𝑁𝑑 , 𝑡 1 = 𝑒

◦ Task on a level has 𝑐𝑁𝑑 work itself

◦ Task on one level down has a𝑐(𝑁/𝑏)𝑑

◦ Proportion: 𝑟 =
𝑡𝑙𝑒𝑣𝑒𝑙+1

𝑡𝑙𝑒𝑣𝑒𝑙
=

𝑎

𝑏𝑑



Complexity of parallel divide-and-conquer
Asymptotic solutions
◦ Case 1: 𝑟 > 1: 𝑡 𝑁 = 𝑂 𝑁log𝑏 𝑎

◦ The work exponentially increases with depth, bottom levels dominate

◦ Case 2: 𝑟 = 1: 𝑡 𝑁 = 𝑂 𝑁𝑑 log2𝑁
◦ The work at each level is about the same
◦ The work is proportional to the work at top level times the number of levels

◦ Case 3: 𝑟 < 1: 𝑡 𝑁 = 𝑂 𝑁𝑑

◦ The work exponentially decreases with depth, top levels dominate

◦ Examples
◦ 𝑐 = 𝑑 = 1

bv



Karatsuba multiplication of polynomials
Input: polynomials 𝑎 and 𝑏 of degree 𝑛 − 1 (𝑛 coefficients)

Output: polynomial 𝑐 of degree 2𝑛 − 2 (2𝑛 − 1 coefficients)

The flat (high-school) method
◦ Concise and highly parallel for large 𝑛

◦ Creates 𝑂(𝑛2) serial work



Karatsuba multiplication of polynomials
Idea of Karatsuba method
◦ 𝑐 𝑥 = 𝑎 𝑥 𝑏 𝑥

= 𝑎1𝑥 + 𝑎0 𝑏1𝑥 + 𝑏0 = 𝑎1𝑏1𝑥
2 + 𝑎1𝑏0 + 𝑎0𝑏1 𝑥 + 𝑎0𝑏0

◦ Only 3 multiplications
◦ 𝑡0 = 𝑎0𝑏0
◦ 𝑡2 = 𝑎1𝑏1
◦ 𝑡1 = (𝑎0+𝑎1) 𝑏0 + 𝑏1
◦ 𝑐 𝑥 = 𝑡2𝑥

2 + 𝑡1 − 𝑡0 − 𝑡2 𝑥 + 𝑡0

◦ Each multiplication can be done by recursive application of Karatsuba method

◦ For small polynomials flat method becomes more efficient



Karatsuba multiplication of polynomials
Method is commonly used for exact integer multiplication
◦ Care must be taken of correct propagation of carries

◦ Example:
◦ 1234 × 5678

◦ 12 × 56



Karatsuba multiplication of polynomials
Implementations
◦ Sequential: pmult_seq.c

◦ Parallel: pmult_par.c
◦ Two new tasks are created for the first two products

◦ Last product computes the calling task

◦ When the base cases are smaller than CUTOFF, switch to flat algorithm



Karatsuba multiplication of polynomials
Time complexity
◦ Unlimited number of threads
◦ No early stopping of recursion
◦ Assume 𝑁 = 2𝑘

◦ Additions and subtractions take time linear in 𝑁

◦ 𝑡1 𝑁 = 3𝑡1
𝑁

2
+ 𝑂 𝑁 , 𝑡1 1 = 𝑂 1

◦ 3 partial products

◦ 𝑟 =
3

2
, 𝑡1 𝑁 = 𝑂(𝑁log2 3)

◦ 𝑡∞ 𝑁 = 𝑡∞
𝑁

2
+ 𝑂 𝑁 , 𝑡∞ (1) = 𝑂(1)

◦ 3 partial products are computed in parallel

◦ 𝑟 =
1

2
, 𝑡∞ 𝑁 = 𝑂(𝑁)

◦ 𝑆(𝑁) =
𝑂 𝑁1.58

𝑂 𝑁
= 𝑂 𝑁0.58 > 𝑂( 𝑁)



Karatsuba multiplication of polynomials
Space complexity
◦ Sequential solution needs less memory as it can reuse structures

◦ 𝑀1 𝑁 = 𝑀1
𝑁

2
+ 𝑂 𝑁 , 𝑀1 1 = 𝑂 1

◦ Parallel solution needs to store some temporary values
◦ Coefficients of 𝑎 𝑥 , b 𝑥 and c 𝑥 can be used on all levels of recursion

◦ Space is needed to store sum of coefficients 𝑎0 + 𝑎1, 𝑏0 + 𝑏1 and their product 𝑡1

◦ 𝑀∞ 𝑁 = 3𝑀∞
𝑁

2
+ 𝑂 𝑁 , 𝑀∞ (1) = 𝑂(1)



Cache-oblivious programming
Memory bandwidth constraints often limit speedup

In such cases it is important to reuse data in cache

Cache sizes vary among platforms, tailoring an algorithm to cache size 
becomes complicated

Suboptimal solution which works well is cache-oblivious programming
◦ Cache paranoid programming

◦ Code is written to work well regardless of the actual cache structure

◦ Divide-and-conquer approach results in good data locality at multiple scales
◦ With division the problem first fits to outermost cache

◦ With further divisions it sooner or later fits to the inner cache



Cache-oblivious programming
Matrix multiply and add
◦ Similar to Strassen algorithm

◦ If matrices are small, use serial multiplication

◦ If matrices are large, divide multiplication to two parts

◦ Take into account the following identities

◦ The goal is to keep the matrices quadratic
◦ Always split the longest axis

◦ This way cache locality is maximized during multiplication

◦ 𝐶𝑚×𝑛 = 𝐶𝑚×𝑛 + 𝐴𝑚×𝑘 × 𝐵𝑘×𝑛
◦ 𝑡1 = 𝑂 𝑚𝑘𝑛

◦ 𝑀(𝑚𝑛 +𝑚𝑘 + 𝑘𝑛) is minimal when 𝑚 = 𝑘 = 𝑛



Cache-oblivious programming
Pseudo code

◦ last else statement prevents raise of memory bandwidth

◦ consider A wide and B tall



Cache-oblivious programming
Time complexity
◦ 𝑡1 = 𝑂 𝑚𝑛𝑘

◦ 𝑡∞ = (log2𝑚+ log2 𝑛 + 𝑘)
◦ On the finest level each task is doing multiplication of one element in matrix C

◦ First two terms give the number of partitions

◦ Last terms gives time needed to get scalar product for one element in matrix C

◦ Parallel computation of the last case
◦ Additional temporary memory structure

◦ 𝑡∞ = (log2𝑚 + log2 𝑛 + log2 𝑘)

◦ Theoretically it is lower than above

◦ In practice initialization of additional structures does not pay off

◦ Multiply and add is used instead of multiply only to get rid of this additional data structure

◦ Asymptotic speedup: 

◦ 𝑆 =
𝑡1

𝑡∞
≈ 𝑂 𝑚𝑛

◦ 𝑘 ≫ log2𝑚, log2 𝑛



Other applications
Sorting

Recurrences

Prefix scan


