
Distributed memory 
computing with MPI
UROŠ LOTRIČ



Architecture: distributed memory
Multiple instructions, multiple data

Processors have their own memory

Other processors do not see memory changes

Processors exchange data by sending messages

Slower compared to shared 
memory systems

More scalable

Focus on interconnections

Cost effective
◦ off-the-shelf hardware 

components

2



Architecture: modern systems
Modern computing resources
◦ Hierarchical organization
◦ Connects many nodes

◦ Shared memory within a node

◦ Offload systems on some nodes

◦ Message passing between nodes

◦ Heterogenous systems

Programming
◦ Reflects hardware organisation

◦ Different programming concepts
◦ Programming languages

◦ Libraries

◦ Algorithms 

3



Distributed memory systems
Network or interconnect is what distinguished distributed systems
◦ Distributed memory parallel computers are just regular computers, nodes 

programmed like any other

◦ Designing for and programming the distributed memory means thinking about 
how data moves between the compute nodes

Important characteristics
◦ How are the nodes connected together?

◦ How are the nodes attached to the network?

◦ What is the performance of the network?

Direct and indirect topologies
◦ Each node has a switch in direct topologies

◦ There are more switches than nodes in indirect topologies



Network
Direct topologies
◦ Mesh and torus
◦ 1, 2, 3, and more dimensions

◦ Torus links mesh ends together

◦ Hypercube

◦ Communication is allowed 
among neighbouring nodes

◦ Constant cost to scale to more nodes

◦ Simple routing algorithms

◦ Easy to understand, simple to model

◦ Matches many problems well



Network
Indirect topologies
◦ Multilevel networks
◦ Fat tree network

◦ Dragonfly (kačji pastir)

◦ Better throughput than 
direct topologies
◦ Reduced number of hops

◦ Cost grows faster than linear 
with additional compute nodes

◦ More complex, harder to model



Network
Simple model
◦ Latency 𝜆

◦ Bandwidth 𝛽

◦ Message length 𝑛

Improvements
◦ Account for number of hops

◦ Additional network characteristics
◦ Topology, number of simultaneous connections, …



MPI



MPI
Message Passing Interface

Standard library interface specified by MPI forum
◦ Well recognized - each cluster has support for MPI

◦ All operations include routine calls

Implements message passing model
◦ Data transfer

◦ Synchronization 

Support
◦ Official support for C/C++, Fortran

◦ Available other binding (Java, Python) but are not standard



MPI
Versions
◦ MPI-1.2 (mostly sufficient)

◦ MPI-2.1 (I/O, dynamic process management)

◦ MPI-3 (enhanced collectives, multithreaded programming, performance tools)

Implementations
◦ MPICH

◦ OpenMPI



MPI concepts
Usually we prepare one parallel program
◦ It consists of many processes which run in parallel

Each process has its own address space
◦ Programmer takes care of 

data movement and placement

Data is sent explicitly among processes
◦ Programmer manages data distribution

◦ Programmer takes care of data transfers

Two types of transfers
◦ Point-to-point

◦ Collectives



MPI concepts
Process
◦ Program code and program counter
◦ Stack and stack pointer
◦ Heap
◦ Static variables
◦ May have one or multiple threads 

sharing a single address space

MPI is for communication among processes 
which have separate address spaces
◦ Many processes can run on a single core or a single node

Inter-process communication consist od
◦ Data transfers
◦ Synchronization



MPI concepts
Processes are collected into groups

Each message is sent in a context and must be receive in the same 
context 

Group and context form communicator
◦ Default communicator MPI_COMM_WORLD contains all processes

◦ Process inside a communicator is identified by its rank
◦ Rank is a number in interval [0, P-1]



MPI concepts
Each message consists of 
◦ communicator,

◦ source address,

◦ destination address,

◦ tag,

◦ data.

Each message is accompanied with user-defined integer tag to assist 
receiving process to identify the message
◦ communicator, source, destination, tag must match

◦ MPI_ANY_TAG does not care about tag in receiving message



MPI advantages
Recognized and standardized library
◦ Come implementations are free

Well understood

Tuned for all sorts of hardware

Used in many applications

Transferrable on code-level

Supports many useful functions

Quite simple to use



MPI Environment
Each process must see executable and data 
◦ Cluster middleware (slurm) and network file system

◦ Processes must have permission to run over network

Executable mpirun (mpiexec) starts requested number of processes

Common approach is to use one executable on all nodes
◦ Differentiation is made inside the code



Programming MPI
In C/C++ we must include library “mpi.h”

Each function returns error code or MPI_SUCCESS

By default, an error causes all processes to abort



Programming MPI
Initialization
◦ MPI_Init(&argc, &argv)
◦ MPI_Init_thread is recommended with MPI-2

◦ MPI_THREAD_SINGLE has the same behaviour as MPI_Init

◦ Additional arguments which take care of thread safety, needed to use OpenMP with MPI

◦ It must be the first MPI routine in a program

Finalization
◦ MPI_Finalize()

◦ In must be the last MPI routine in a program



Programming MPI
How many processes are running
◦ MPI_Comm_size(MPI_COMM_WORLD, &size)

Who am I?
◦ MPI_Comm_rank(MPI_COMM_WORLD, &myid)

Timing
◦ MPI_Wtime()
◦ Returns wall-clock time in seconds

◦ Difference between two points in time is only relevant

◦ MPI_Wtick()
◦ Resolution of timer



Point-to-point 
communication



Point-to-point communication
Cooperative approach
◦ Data is explicitly send by one process and received by another

◦ Any change in receiver’s memory is made with his participation

◦ Communication and synchronization are combined

◦ MPI_Send/MPI_Recv

◦ Commonly used

One sided operations
◦ Only one process takes care of data transfer

◦ Remote memory reads and writes

◦ Communication and synchronization are decoupled

◦ MPI_Put/MPI_Get

◦ Rarely used



Point-to-point communication
Buffer
◦ MPI_Send copies data to local buffer sending process continues executing

◦ MPI_Recv of receiving process gets data when it is ready
◦ Some details about received message can be obtained from returned status (MPI_Status)

◦ Dead-lock prevention

◦ Smoother operation

◦ Limited size
◦ If message is larger than buffer,

buffer-less mode is used

Blocking mode
◦ MPI_Recv waits until it gets the

message



Point-to-point communication
Synchronous (without buffer)
◦ It is better to avoid copying

◦ Sending process and receiving process must synchronously exchange data

◦ Not possible if MPI_Recv is not ready

Blocking communication
◦ MPI_Recv waits until in gets 

the message

Buffer or synchronous mode
can be explicitly specified
◦ MPI_Bsend

◦ MPI_Ssend

◦ MPI_Recv remains the same



Point-to-point communication
Example 1
◦ Works in buffered mode

◦ Fails in synchronous mode

◦ Unsafe, it depends on the
size of buffer

Example 2
◦ Each send has

corresponding receive

◦ Works in both modes



Point-to-point communication
First example
◦ hello.c

Compiling on NSC
◦ module load mpi

◦ mpicc hello.c –o hello

Running on NSC
◦ srun --mpi=pmix -N <nodes> -n <procs> ./hello

◦ mpirun –n <nodes> –np <procs> ./hello



Non-blocking communication
Immediate operation
◦ Function returns immediately, send is performed by another thread

◦ On return function gives handler for testing on completion

It is safe to use

Not necessarily faster
◦ Lots of short messages, lots of handlers

Not necessarily concurrent/asynchronous
◦ Depends on MPI implementation



Non-blocking communication
Infrastructure
◦ Request
◦ MPI_Request request

◦ Send/receive (one of arguments is request)
◦ MPI_Isend, MPI_Irecv, MPI_Ibsend, MPI_Issend

◦ Inquiry (refers to request)
◦ MPI_Wait, MPI_Test



Point-to-point communication
Blocking and immediate functions can be combined

In MPI function calls MPI datatypes are used for compatibility

It is not necessary that sending and receiving datatype match



Example: stencil
MPI has a rich list of functions
◦ MPI_Sendrecv
◦ MPI_Send and MPI_Recv combined

◦ Useful with stencil pattern

Conway’s game of life in MPI



Collective 
communication



Collective communication
Involves all processes in communicator
◦ MPI_COMM_WORLD is default

◦ Can create own subsets

◦ MPI-2+ can create even bigger sets if dynamic process allocation is supported

Programs using only collective communication are easy to understand
◦ Every process does roughly the same thing

◦ No inventive communication patterns

Functions for collective communication are optimized
◦ Devised by experts

◦ Detailed implementation depends on infrastructure
◦ Existing protocols in network infrastructure (broadcast)



Collective communication
All collective functions must be called by all processes in the 
communicator

Functions work with any number of processes from 1 onwards

All collective functions are blocking (MPI-1, MPI-2)

There is no tags

Basic datatypes (MPI-1, MPI-2)

Types of collectives
◦ Synchronization

◦ Data transfer

◦ Collective computation



Synchronization
MPI_Barrier
◦ rarely used

◦ for performance measurements



Data transfer
MPI_Bcast
◦ One to all

P0 A

P1

P2

P3

P0 A

P1 A

P2 A

P3 A



Data transfer
MPI_Scatter
MPI_Gather

Simple functions expect all data chunks to be of the same size

One data chunk is also on root process 

Some parameters are valid on side of sender, some on side of receiver

More general but slower vector functions can be used
◦ MPI_Scatterv
◦ MPI_Gatherv
◦ Variable size of data chunks

P0 A B C D

P1

P2

P3

P0 A

P1 B

P2 C

P3 D

scatter

gather



Data transfer
MPI_Gather
◦ Efficient implementation



Data transfer
MPI_Allgather
◦ MPI_Gather + MPI_Bcast

◦ Can be done in one
pass of the tree

MPI_Alltoall
◦ Transpose of data

◦ Tricky to implement
efficiently and in general

gather on all

P0 A0 A1 A2 A3

P1 B0 B1 B2 B3

P2 C0 C1 C2 C3

P3 D0 D1 D2 D3

P0 A0 B0 C0 D0

P1 A1 B1 C1 D1

P2 A2 B2 C2 D2

P3 A3 B3 C3 D3

All to all

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

P0 A

P1 B

P2 C

P3 D



Collective computation
MPI_Reduce

◦ Available reduce operations
◦ MPI_MAX, MPI_MIN (minimum and maximum)

◦ MPI_SUM, MPI_PROD (sum and product)

◦ MPI_LAND, MPI_LOR, MPI_LXOR (logical)

◦ MPI_BAND, MPI_BOR, MPI_BXOR (bit-wise)

◦ MPI_MAXLOC, MPI_MINLOC (extreme value + process with extreme value)

P0 A

P1 B

P2 C

P3 D

P0 A+B+C+D

P1

P2

P3



Collective computation
MPI_Scan

MPI_Exscan

P0 A

P1 B

P2 C

P3 D

P0 A

P1 A+B

P2 A+B+C

P3 A+B+C+D

P0 A

P1 B

P2 C

P3 D

P0 Identity (0, 1)

P1 A

P2 A+B

P3 A+B+C



Collective computation
MPI_Allreduce
◦ MPI_Reduce + MPI_Bcast

P0 A

P1 B

P2 C

P3 D

P0 A+B+C+D

P1 A+B+C+D

P2 A+B+C+D

P3 A+B+C+D



Collective computation
MPI_Allreduce
◦ Efficient computation



Collective computation
Determinism
◦ Roundoff error, truncation, depends on order of computation

◦ MPI does not guarantee the same result on the same input
◦ Encouraged but not required

◦ Not all applications need it

◦ More efficient implementations of collectives are possible without it



Advanced features



Advanced features
Datatypes

Communicators 

Virtual topology
◦ reflects actual system configuration

◦ Cartesian, graph

MPI-IO

Collective functions
◦ Neighbourhood

◦ Immediate 


