
Patterns: 
matrix representations
UROŠ LOTRIČ



Dense matrices
Memory allocation
◦ Number of elements
◦ rows x cols

◦ Common approach
◦ Allocate array of pointers to the beginning of rows

◦ Allocate array of row elements separately for each row

◦ There is no guarantee that rows will be adjacent to each other in memory

◦ Access to elements: m[row][col]



Dense matrices
Memory allocation
◦ Continuous memory approach
◦ Allocate array of matrix elements

◦ If needed, allocate array of pointers to beginning of rows

◦ Whole matrix data is stored in continuous memory space



Dense matrices
Data organization
◦ Row-major
◦ m[row][col] = mdata[row*cols + col]



Dense matrices
Data organization
◦ Column-major
◦ m[col][row] = mdata[col*rows + row]



Matrix-vector multiplication
Common in science
◦ Neural network procession on fully connected layers

◦ Iterative solution of large system of equations

◦ Conjugate gradient solver
◦ 𝐀𝐱 + 𝐛 = 0

◦ The most complex part is matrix-vector multiplication

◦ Matrix does not change, can be stored on device



Matrix-vector multiplication
𝐯𝐨𝐮𝐭 = 𝐌𝐯𝐢𝐧

x           = 

Standard sequential approach
◦ dot-product of matrix rows and vector
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Matrix-vector multiplication
Parallelisation: each row can be processed in parallel
◦ Good approach when not many workers
◦ favourable on multi-cores, each core sequentially processes more rows

◦ GPU, simple (MV-0.cl)
◦ Same logic as above

◦ Works well for matrices with many rows

◦ Non-coalesced memory access



Matrix-vector multiplication
◦ GPU, tiled approach (MV-1.cl)
◦ Each worker computes one element of output vector

◦ Coalesced reading of input vector (phase I.)

◦ All workers in a workgroup can simultaneously 
read input vector from global to local memory

◦ Each worker calculates dot product on a tile (phase II.)

◦ Matrix elements are read from global memory

◦ Each worker reads its own matrix row which
leads to non-coalesced access to global memory

◦ When a tile is completed, process is repeated 
on the next

◦ GPU, tiled approach, column-major (MV-2.cl)
◦ Adjacent workers read matrix data from adjacent memory locations



Matrix-vector multiplication
Tiled approach
◦ Can be efficiently extended to matrix-matrix multiplication

Comparison of OpenCL kernels

Dense matrix representation
◦ Storage is limiting factor

◦ Nvidia CUDA K20 
◦ 12 GB of global memory

◦ can store one square matrix of size 54.7k x 54.7k elements

Approach Time [s]
Sequential 1,3

MV-0.cl 0,97

MV-1.cl 0,81

MV-2.cl 0,25



Sparse matrices
Are matrices with majority of elements zero

Usage: science, engineering, financial modelling

Many real-world applications work on sparse matrices
◦ Only non-zero elements are important

→
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Sparse matrices
Compaction of representation
◦ Storing in a format which avoids storing zeros

◦ Introduces irregularity

Irregularity is a drawback in parallel implementations
◦ Underutilization of memory bandwidth

◦ Control flow divergence

◦ Load imbalance

◦ Illustrates data-dependant performance common to real-world applications

Storage formats
◦ Quest for good balance between compaction and regularization
◦ Good compaction, high level of irregularity

◦ Modest compaction, more regular representation



Coordinate representation (COO)
Each non-zero element is represented with 
◦ data, 
◦ row, and
◦ column information

Arbitrary order of data
◦ If we look at any single element 

we can place it to a matrix
◦ Format not appropriate for parallelization

Also known as “matrix market” format

Sequential implementation
1 2

5 4 3

6 7

data[7] 1 2 5 4 3 6 7

row[7] 0 0 1 1 1 3 3

col[7] 0 2 1 2 3 1 2



Compressed sparse row (CSR)
Elements are ordered row-wise
◦ Data and col struct remain equal to COO

◦ row_ptr replaces row
◦ has row+1 element

◦ row_ptr[r] points to the element in data where 
row r starts

◦ last element points to the end of data

◦ useful in implementations 

◦ number of elements in a row  = row_ptr[r+1] – row_ptr[r]

◦ row_ptr[r] of non-existing row points to a data element 
where it would start

Sequential implementation
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data[7] 1 2 5 4 3 6 7

row_ptr[5] 0 2 5 5 7

col[7] 0 2 1 2 3 1 2
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Compressed sparse row (CSR)
Parallel implementation
◦ Millions of rows in real applications

◦ Each worker processes one row and has enough work
◦ Inner loop is performed by each worker

◦ Non-coalesced memory access
◦ Figure on the right

◦ Worker r works on row r

◦ In first iteration simultaneous access to data[0], data[2], -, data[5]

◦ Accesses of adjacent workers not to adjacent locations

◦ Inefficient use of bandwidth

◦ Control-flow divergence in warps
◦ Number of worker iterations depends on number of elements in a row

◦ Random distribution of non-zero elements → control-flow divergence in most warps

1 2

5 4 3

6 7



ELLPACK format (ELL)
Package for solving elliptic boundary value problems

Data-padding and transposition to tackle
◦ non-coalesced memory access

◦ control-flow divergence

Padding of shorter rows with zeros
◦ All rows have the same number of elements

◦ Example
◦ row 0 gets 1 zero, row 2 gets 3 zeros, row 3 gets 2 zeros

◦ Now all workers have the same amount of work

◦ Structures become larger →

◦ * indicates inserted elements (0) in col array

1 2 0

5 4 3

0 0 0

6 7 0
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data[12] 1 2 0 5 4 3 0 0 0 6 7 0

col[12] 0 2 * 1 2 3 * * * 1 2 *



ELLPACK format (ELL)
Matrix transposition
◦ Row-major to column-major representation

◦ No need for row_ptr as rows are of equal size

◦ We need to keep number of row elements num_elementsinrows

1 5 0 6

2 4 0 7

0 3 0 0

data[12] 1 2 0 5 4 3 0 0 0 6 7 0

col[12] 0 2 * 1 2 3 * * * 1 2 *

1 2 0

5 4 3

0 0 0

6 7 0

data[12] 1 5 0 6 2 4 0 7 0 3 0 0

col[12] 0 1 * 1 2 2 * 2 * 3 * *



ELLPACK format (ELL)
Matrix transposition
◦ First element of row r: data[r], i-th element of row r: data[r+i*num_rows]

◦ Bonus: all adjacent threads are now accessing adjacent memory locations 
◦ Example: 

◦ 4 workers access at the same time underlined data

◦ Underlined data is adjacent for adjacent workers

1 5 0 6

2 4 0 7

0 3 0 0

data[12] 1 5 0 6 2 4 0 7 0 3 0 0

col[12] 0 1 * 1 2 2 * 2 * 3 * *



ELLPACK format (ELL)
Sequential 
code

Parallel solution
◦ Each worker works on one row

1 5 0 6

2 4 0 7

0 3 0 0

data[12] 1 5 0 6 2 4 0 7 0 3 0 0

col[12] 0 1 * 1 2 2 * 2 * 3 * *



Experiments
Timing: 1000 x
◦ write vin to device, multiply on device, read vout from device

Discussion
◦ Parallel ELL wins in most cases

◦ Poor results on 
◦ max-ecn-fwd500.mtx 

◦ scircuit.mtx

Code
◦ SpMV_cl.c

◦ SpMV_cl.cl

data size non-zero seq COO [ms] par CSR [ms] par ELL [ms]
cant.mtx 62k 4M 9.98 3.90 0.49
consph.mtx 83k 6M 15.8 5.85 0.66
mac-econ-fwd500.mtx 207k 1.3M 2.14 0.86 1.08
mc2depi.mtx 526k 2.1M 3.11 1.19 1.08
pdb1HYS.mtx 36k 4.3M 11.8 4.92 0.69
pwtk.mtx 218k 11.6M 28.3 11.7 3.00
scircuit.mtx 171k 59k 1.51 0.61 4.74
shipsec1.mtx 141k 4M 7.97 2.00 1.01



Experiments
Comparison of distribution of number of elements in a row
◦ consph.mtx
◦ majority of rows has around 80 elements per row

◦ scircuit.mtx
◦ majority of row with < 10 and few rows with 350+ elements

◦ A lot of padding with zeros



Hybrid solution (HYB)
Split initial matrix to two parts
◦ One part has approximately the same number of rows
◦ Converted to ELL

◦ Runs on GPU

◦ The other part stores excessive elements in long rows
◦ Converted to COO

◦ Runs on host

=                             +

ELL                           COO
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Jagged diagonal storage (JDS)
Sort rows descending by number of elements
◦ Must keep record of initial row position

Split matrix horizontally to 
submatrices with similar                                                        →
number of elements in rows

Perform ELL sequentially on 
submatrices

No need for CPU computation

Better suited for sparse matrices with
a wide distribution of row-lenghts
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