
Patterns: stencil
UROŠ LOTRIČ



Stencil
Special case of map
◦ 1D or multiple dimensions

Has regular data access pattern
◦ Each output depends on a neighbourhood of inputs 

◦ Inputs have fixed offsets relative to the output

◦ Can be implemented as 
◦ Set of random reads for each output

◦ Shifts

Applications
◦ Image and signal processing (convolution)

◦ Physics, mechanical engineering, CFD (PDE solvers over regular grids)



Stencil
Different neighbourhoods
◦ Square compact, …, sparse

Cache optimizations
◦ Stencils reuse samples required for 

neighbouring elements

Boundaries of grids given to a processor
◦ Exchange data with other processors

◦ Additional communication costs



Stencil
Implementation with shift operation
◦ Beneficial for 1D stencils

◦ Allow vectorization of data reads

◦ Does not reduce memory traffic



Stencil
Implementation with tiles
◦ Multidimensional stencils
◦ Strip-mining (optimized for cache)
◦ Example
◦ Two dimensional array organized in row-by-row fashion with 

many vertical offsets

◦ Horizontal data in the same cache line, vertical far away

◦ Horizontal split

◦ whole line does not fit cache, a lot of cache misses when 
accessing adjacent rows

◦ Vertical split

◦ processors redundantly read the same cache line

◦ Strips

◦ Each processor gets its strip of width equal to a multiple of cache line size

◦ Processing goes sequentially from top to bottom to maximize cache reuse

◦ Multiple of cache line size prevents false sharing between adjacent strips on output



Stencil
Communication
◦ Commonly the output of stencil is used as the input for the next iteration
◦ Double buffering

◦ Pointers to buffers are interchanged between iterations

◦ Need for synchronization

◦ Boundary regions (halo) of the grid may need explicit communication with 
neighbouring processors
◦ Halo can be exchanged each iteration

◦ Data exchange can take place on each k-th iteration when halo is increased and some redundant 
computation takes place on each processor

◦ Latency hiding (update of internal grid cells when waiting for halo exchange)



Stencil
Example
◦ Conway’s Game of Life
◦ Zero player game played on a board of cells

◦ A cell can be dead or alive, has 8 neighbours

◦ Rules

◦ A live cell with < 2 neighbours dies

◦ A live cell with 2 or 3 neighbours lives on

◦ A live cell with > 3 neighbours dies

◦ A dead cell with 3 neighbours becomes alive

◦ Iterations are not independent

◦ Status of all cells must be computed first

◦ All cell statuses are refreshed at once



Patterns: Reduce



GPU reduce
Example: dot product
◦ One thread, sequential
◦ Problem size and number of threads

◦ Shared memory

◦ Summation on host

◦ Tree-like
◦ Sum neighbours: stride is increasing with iterations

◦ Warp-optimized solution: stride is decreasing with iterations

◦ Non-power-of-two



Patterns: Scan



Scan
Also prefix scan

Produces all partial reductions of an input sequence
◦ exclusive and inclusive scan

Operation
◦ Input sequence: 
◦ 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛−1

◦ Output: 
◦ exclusive scan: 𝐼, 𝑎0, 𝑎0 ∘ 𝑎1, 𝑎0 ∘ 𝑎1 ∘ 𝑎2, … , 𝑎0 ∘ ⋯∘ 𝑎𝑛−2
◦ inclusive scan: 𝑎0, 𝑎0 ∘ 𝑎1, 𝑎0 ∘ 𝑎1 ∘ 𝑎2, … , 𝑎0 ∘ ⋯ ∘ 𝑎𝑛−1

◦ Example: summation



Scan patterns
Sequential approach
◦ Loop-carried dependence

Parallel approach 
◦ Loop-carried dependence

◦ Similar to reduce

◦ Two solutions

◦ Count on associativity of 
combiner function (∘)



Scan, version 1
Hillis and Steele, 1986

Solution requires two buffers of length n



Scan, version 1
Number of synchronization steps: log2 𝑛

Number of operations when n is power of 2: 𝑛(log2 𝑛 − 1) + 1

Sequential time
◦ 𝑡𝑠 𝑛 = 𝜒 𝑛 − 1 = 𝑂 𝑛



Scan, version 1
Tiled computation

Example
◦ n elements

◦ p processes 



Scan, version 1
Tiled computation

Pattern

Example
◦ Tiled computation in OpenCL:

solution with one work-item

◦ Tiled computation in OpenCL:
Hillis and Steele



Scan, version 2
Work efficient solution

One buffer suffices 

Figure
◦ n = 12

◦ rounded values
are final

Similar to reduction
with increasing stride



Combining scan
Map
◦ Tiled scan: map can be applied before the first stage and/or after the last stage

◦ Reduces data transfers

Reduce
◦ Similar scheme, can do both with little extra work


	Slide 1: Patterns: stencil
	Slide 2: Stencil
	Slide 3: Stencil
	Slide 4: Stencil
	Slide 5: Stencil
	Slide 6: Stencil
	Slide 7: Stencil
	Slide 8: Patterns: Reduce
	Slide 9: GPU reduce
	Slide 10: Patterns: Scan
	Slide 11: Scan
	Slide 12: Scan patterns
	Slide 13: Scan, version 1
	Slide 14: Scan, version 1
	Slide 15: Scan, version 1
	Slide 16: Scan, version 1
	Slide 19: Scan, version 2
	Slide 21: Combining scan

