Patterns: stencil

UROS LOTRIC

Stencil

Special case of map

@
@
.
&
)
()

o 1D or multiple dimensions QQYQYQ\/QYQYQ\(Q\(Dg
Has regular data access pattern i i i
o Each output depends on a neighbourhood of inputs

00

o Inputs have fixed offsets relative to the output
o Can be implemented as

o Set of random reads for each output
o Shifts

Applications
o Image and signal processing (convolution)
o Physics, mechanical engineering, CFD (PDE solvers over regular grids)

Stencil

Different neighbourhoods |
© Square compact, .., SPaArse QQ Q Q

Cache optimizations i i i i i i

o Stencils reuse samples required for |
neighbouring elements OO0

>
>
2@
o
al=
al=
>
o
0

&
)
()

O
O

Boundaries of grids given to a processor
o Exchange data with other processors
o Additional communication costs

Stencil

Implementation with shift operation
o Beneficial for 1D stencils

o Allow vectorization of data reads

o Does not reduce memory traffic

QO@DDDQQ Q0000000 | 00000000

NANANANANANAN N /77777
RREEREEEE NEEEEEEE HAEEEEEE
@ 0000 ©PooOOO0O0O0O O 000

Stencil

Implementation with tiles

o Multidimensional stencils

o Strip-mining (optimized for cache)
o Example

o Two dimensional array organized in row-by-row fashion with
many vertical offsets

o Horizontal data in the same cache line, vertical far away
o Horizontal split

o whole line does not fit cache, a lot of cache misses when
accessing adjacent rows

o Vertical split

o processors redundantly read the same cache line
o Strips

o Each processor gets its strip of width equal to a multiple of cache line size

o Processing goes sequentially from top to bottom to maximize cache reuse

o Multiple of cache line size prevents false sharing between adjacent strips on output

<

00000000
0000080480

000C0000
coococoooO
00000000
00000000
0000000C
000000 Oo0

-
pe

Stencil

Communication

> Commonly the output of stencil is used as the input for the next iteration

° Double buffering
o Pointers to buffers are interchanged between iterations

> Need for synchronization

o Boundary regions (halo) of the grid may need explicit communication with
neighbouring processors
o Halo can be exchanged each iteration

o Data exchange can take place on each k-th iteration when halo is increased and some redundant
computation takes place on each processor

o Latency hiding (update of internal grid cells when waiting for halo exchange)

Stencil

Example

o Conway’s Game of Life
o Zero player game played on a board of cells
o A cell can be dead or alive, has 8 neighbours
o Rules
o A live cell with < 2 neighbours dies
o A live cell with 2 or 3 neighbours lives on
o A live cell with > 3 neighbours dies
o A dead cell with 3 neighbours becomes alive
o |terations are not independent
o Status of all cells must be computed first

o All cell statuses are refreshed at once I : | | : || | -

Patterns: Reduce

GPU reduce

Example: dot product
> One thread, sequential

o Problem size and number of threads

o Shared memory
o Summation on host
o Tree-like
o Sum neighbours: stride is increasing with iterations
o Warp-optimized solution: stride is decreasing with iterations

o Non-power-of-two

Patterns: Scan

Scan

Also prefix scan

Produces all partial reductions of an input sequence
o exclusive and inclusive scan

Operation
° [nput sequence:
° lag, aq,az, ..., an_1]
o Qutput:

o exclusive scan: [I,ag, @y © A1,00© A1 © Ay, ey Ay © *+* 0 Apy_>]
o inclusive scan: [ag, @y © @1,dg©aq © Ay, ..., g © *+* 0 Ayy_1]

o Example: summation

Y| 0|3 |7 13/16|24|31 |36 Exclusive Scan

Yy | 3|7 13/16|24|31 36 40| Inclusive Scan

Scan patterns

Sequential approach CO00000Qg

o Loop-carried dependence 1 | 0000009

Parallel approach 1 rErerEr

o Loop-carried dependence j‘ E y

o Similar to reduce j* , ' y

> Two solutions ﬁ!ﬂ‘ L

> Cou n’; on associ'ativity of ﬂ! BT |
combiner function (o) h - h

C0000] 0000000

Scan, version 1
Hillis and Steele, 1986

Solution requires two buffers of length n

Scan, version 1

Number of synchronization steps: [log, n]

Number of operations when nis power of 2: n(log, n —1) + 1

Sequential time
°ts(n) = x(n—1) = 0(n)

Scan, version 1

Tiled computation

Example
°n elements
° P pProcesses

Scan, version 1

Tiled computation 0 0000 9000 Q000 0000
Pattern
Example
o Tiled computation in OpenCL: T
solution with one work-item ﬁ J
o Tiled computation in OpenCL:
Hillis and Steele
® 0 0
. > . T

Scan, version 2

Work efficient solution
One buffer suffices

Figure

on=12

o rounded values
are final

Similar to reduction
with increasing stride

Combining scan
Map

o Tiled scan: map can be applied before the first stage and/or after the last stage

o Reduces data transfers

Reduce
o Similar scheme, can do both with little extra work

	Slide 1: Patterns: stencil
	Slide 2: Stencil
	Slide 3: Stencil
	Slide 4: Stencil
	Slide 5: Stencil
	Slide 6: Stencil
	Slide 7: Stencil
	Slide 8: Patterns: Reduce
	Slide 9: GPU reduce
	Slide 10: Patterns: Scan
	Slide 11: Scan
	Slide 12: Scan patterns
	Slide 13: Scan, version 1
	Slide 14: Scan, version 1
	Slide 15: Scan, version 1
	Slide 16: Scan, version 1
	Slide 19: Scan, version 2
	Slide 21: Combining scan

