
HPC:
Shared memory systems
UROŠ LOTRIČ

Synchronization
High-level synchronization
◦ critical

◦ atomic

◦ barrier

◦ ordered

◦ master

◦ Single

Low-level synchronization
◦ flush

◦ locks

Synchronization: flush
OpenMP supports a shared memory model
◦ Main memory

Processors can have their own cache
◦ Cache coherence

◦ When a thread updates shared data, the new value will first be stored back to
the local cache

◦ The updates are not necessarily immediately visible to other threads

The flush directive makes thread’s temporary view of shared data
consistent with the value in memory
◦ Thread-visible variables are written back to memory

Synchronization: lock routines
A lock implies a memory fence of all thread-visible variables.
◦ With locks we can gurantee that only one thread accesses a variable at a time

◦ Avoid race conditions.

◦ Lock structure: omp_lock_t or omp_nest_lock_t.
◦ Ordinary and nested locks

◦ Simple Lock routines:
◦ omp_init_lock

◦ omp_set_lock

◦ omp_unset_lock

◦ omp_test_lock

◦ omp_destroy_lock

Synchronization: lock routines
How to use locks:
◦ Define the lock variables

◦ Initialize the lock

◦ Set the lock or test for locked
◦ Test checks whether the lock is available before attempting to set it

◦ Unset a lock after the work is done

◦ Destroy the lock

◦ More common naming: mutex (Mutual Exclusion)

Synchronization: lock routines
Dijkstra

Dining Philosophers Problem
◦ Five philosophers, plates of spaghetti and five forks.

◦ Philosophers have a discussion: they think and talk,
become hungry, eat, think and talk, ...

◦ Each philosopher eats with two forks,
he can only take a fork of his neighbor

◦ How to prevent a dead-lock?

Performance issues
Loop interchange to increase cache locality
◦ placement of matrix in memory

Avoid parallel overhead when number of iterations is low
◦ #pragma omp parallel for if (iters > 100)

◦ for(i = 0; i < iters; i++)

◦ …

Performance issues
Move synchronization point outwards
◦ Split omp parallel (thread creation) and omp for (iterations)

◦ Example: Conway‘s game of life

Vector unit
SSE (Streaming SIMD Extensions)
◦ 128-bit registers

AVX (Advanced Vector Extensions)
◦ AVX & AVX2 (256-bit registers), AVX-512 (512-bit registers)

◦ Parallel operations
◦ Single precision FP: 8 x 32 bit

◦ Double precision FP: 4 x 64 bit

Compilers of today attempt to do vectorization automatically
◦ Compiler switch -O2 is a must

OpenMP & SIMD
#pragma omp simd
◦ Introduced with OpenMP 4.0

◦ The simd directive can be thought essentially as a directive to the compiler,
saying: „Try harder“.

Explicit vectorization of for loops
◦ Automatic vectorization not always possible – compiler does not know that

data structures do not overlap

◦ Specified in the same way as with parallel

◦ Can be combined with parallel

OpenMP & SIMD
#pragma omp simd

Clauses
◦ simdlen (len): recommended size (iterations) per chunk, vectorization is

performed in chuks of simdlen

◦ safelen (len): specifies the size of a chunk with no data dependency

◦ aligned(vars: bits): informs omp that variable is aligned in memory

◦ collapse, private, firstprivate, reduction, …

OpenMP & SIMD: memory alignment
Data transfer is faster when memory addresses are aligned

Allows for faster hardware instructions to load vector

64B byte cache line
◦ AVX1&2: best is to align at 32 bytes (256 bits)
◦ AVX-512: best is to align at 64 bytes (512 bits)

Aligned memory allocation
◦ Important to use with custom data types
◦ Usage:

buffer = aligned_alloc(32, num_bytes);
…
#pragma omp simd aligned(buffer, 32)
…
free(buffer);

OpenMP & SIMD: functions
Call of a function from a loop

We can instruct the compiler that a function can be vectorized

#pragma omp declare simd
◦ Indicate a function that can explicitly use vectorization

◦ Instruct compiler to prepare different versions of the function

	Slide 1: HPC: Shared memory systems
	Slide 2: Synchronization
	Slide 3: Synchronization: flush
	Slide 4: Synchronization: lock routines
	Slide 5: Synchronization: lock routines
	Slide 6: Synchronization: lock routines
	Slide 7: Performance issues
	Slide 8: Performance issues
	Slide 9: Vector unit
	Slide 10: OpenMP & SIMD
	Slide 11: OpenMP & SIMD
	Slide 12: OpenMP & SIMD: memory alignment
	Slide 13: OpenMP & SIMD: functions

