
HPC: Patterns



Parallel programming models
None of most used programming languages was designed for parallel 
programming

Evolution (compiler directives, libraries)

Portable parallel programming
◦ Portability is impaired when programming using hardware mechanisms

◦ Nested parallelism is important, nearly impossible to manage when implied by 
specific mechanisms like threads
◦ Tasks have less overhead, better opportunities to allocate resources

◦ Important to design libraries without exposing internal details

◦ Other mechanisms for parallelization exists and must be considered 
(vectorization)
◦ Abstraction avoids dependencies on instruction set ...



Parallel programming models
Regular data parallelism (map)
◦ Array expressions (Directives for vector operations) (OpenMP)

◦ Elemental functions (OpenCL)

Other patterns (scan, reduce) can also be expressed directly using 
programming models

Conversion of serial programs
◦ Refactoring
◦ Array-of-structures and structures-of-arrays (better for vectorization)

◦ Compiler technology support
◦ Easy conversion of serial programs (OpenMP)

◦ Pragma directives



Parallel programming models
Problem of composability
◦ Two different programming models used simultaneously
◦ Problem of nesting
◦ Serial library called in parallel program was upgraded to parallel

◦ Thread oversubscription
◦ OpenMP not optimal, threads created as part of the execution model

Portability
◦ OpenMP, OpenCL, and MPI are standards, many portable implementations are 

available
◦ Performance: abstract programming models are crucial
◦ OpenMP/MPI offers strong performance portability

◦ OpenCL is more tied to hardware, tuning can favour one hardware

Determinism
◦ The same results as serial not always needed, testing for correctness



Pattern-based programming
Patterns are “best practices” for solving specific problems.

Patterns can be used to organize your code, leading to algorithms that 
are more scalable and maintainable.

A pattern supports a particular algorithmic structure with an efficient 
implementation.  

Good parallel programming models support a set of useful parallel 
patterns with low-overhead implementations.
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Pattern-based programming
Focus on algorithm strategy patterns
◦ Algorithm skeletons

◦ Not design patterns (high level, abstract)

◦ Not implementation patterns (low-level, hardware specific)

Patterns
◦ Semantics
◦ building blocks, arrangement of tasks, data dependencies

◦ design phase

◦ Implementation
◦ Granularity, good use of cache

Focus on data parallelism to ensure scalability



Pattern-based programming
Task
◦ Task is a unit of potentially parallel work

◦ Tasks are executed by scheduling on software threads
◦ Usually cooperative: at predicted switch points

◦ Software threads are scheduled by OS onto hardware threads
◦ Preemptive approach is most common (at any time)



Serial Patterns
Patterns are universal
◦ Can be applied to any programming system

◦ They lead to well-structured, maintainable, efficient code

◦ New patterns can be derived from existing patterns

Serial patterns → parallel patterns



Nesting
Fundamental compositional pattern

Allows for hierarchical composition

Any task block in a pattern can be replaced with a pattern with the 
same input and output configuration and dependencies



Nesting
Nesting is crucial for structured, modular code

Static
◦ Code structure

◦ Functional decomposition

◦ Serial program is composed of
◦ sequence, selection, iteration, recursion

◦ goto sentence violates nesting



Serial Control Flow Patterns
Sequence
◦ No data dependencies

◦ Data dependencies 
restrict the order

◦ Parallel generalization: superscalar sequence 
◦ removes code-text order constraint

◦ Order tasks only by data dependencies



Serial Control Flow Patterns
Selection

◦ Parallel generalization: speculative selection
◦ a, b, c may be executed in parallel, 

◦ a or b is discarded when c is known



Serial Control Flow Patterns
Iteration

◦ Countable iteration
◦ Equivalence of for and while loops

◦ Parallel generalization
◦ Task f may depend on previous invocations of itself (loop-carried dependencies)

◦ The serial iteration pattern appears in several different parallel patterns

◦ map, reduction, scan, recurrence, scatter, gather, pack

◦ parallel patterns have a fixed number of invocations, known in advance



Serial Control Flow Patterns
Iteration
◦ Problem of hidden data dependencies
◦ Parallelization capability depends on a[i], b[i], c[i], d[i]

◦ Pointers

◦ y can point to the same location as x



Serial Control Flow Patterns
Recursion
◦ dynamic nesting which allows functions to call themselves

◦ stack memory allocation



Serial data management patterns
Random read and write
◦ working with pointers, possible aliasing (two pointers refer to the same 

memory object) 

◦ Aliasing can make vectorization and parallelization difficult
◦ Undefined result

◦ Extra object copies → slow

◦ Burden put on programmer

◦ Working with array indices is safer and easier to transfer to another platform

Stack allocation
◦ Efficient as arbitrary amount of data can be allocated and preserves locality

◦ Each thread gets its own stack



Serial data management patterns
Heap allocation
◦ Slower then stack allocation

◦ Allocation scattered all over memory (matrix allocation)
◦ More expensive due to memory hardware subsystem

◦ Implicitly sharing the data structure can lead to scalability problems
◦ Better: maintain separate memory pool on each worker and avoid global locks

◦ Get rid of false sharing



HPC: Parallel Patterns



Map
Replicates elemental function over every element of index set

Map replaces iterations of independent loops

Elemental functions should not modify global data that other 
instances (iterations) depend on

Examples:
◦ gamma correction in images, color space conversions, 

◦ Monte Carlo sampling, ray tracing



Map
Map applies an elemental function to every element of a collection of 
data in parallel
◦ Elemental functions should have no side effects

◦ No dependency among elements

◦ Can execute in any order

Embarrassingly parallel
◦ One of the most efficient patterns

◦ If you have many problems to solve, parallel solution can be as simple as 
running problems in parallel

Typically combined with other patterns
◦ map does the basic computation, other patters follow
◦ gather = serial random read + map, reduction, scan



Map
Serial and parallel execution of map pattern



Map
Scalable implementation of map
◦ A lot of care for best performance

◦ Threads
◦ Mandatory parallelism 

◦ Separate thread for each element is not a good idea

◦ Tasks
◦ Optional parallelism

◦ Overhead and synchronization at the beginning and at the end when elemental functions vary in the 
amount of work

Map is a basis for vectorization and parallelization

Map-reduce
◦ Google’s big success



Map
Map is related to SIMD, SPMD, SIMT
◦ can be expressed as a sequence of vector operations

Parallel for construct in programming languages
◦ Map is parallelization of the serial iteration pattern where iterations are 

independent

If dependencies and side-effects are avoided, map is deterministic



saxpy
Scaled vector addition
◦ (saxpy - single precision)

◦ Elemental function
◦ Uniform and varying parameters

◦ Serial implementation



Mandelbrot set
Problem
◦ Mandelbrot set (black) is the set of all points c in the complex plane 

that do not go to infinity with iterations
◦ Divergence for large z

◦ Compute the function up to some maximum value K

◦ Serial control flow in elemental functions

Problem
◦ Load imbalance

Implementation
◦ Opposed to saxpy it cannot be efficiently 

computed on SIMD machines

◦ best with SPMD or tiled SIMD



Mandelbrot set
Serial



Code fusion
Map of sequence can avoid intermediate memory operations
◦ Intermediate results are written in registers

◦ reduced memory bandwidth, cache and virtual memory problems

◦ Less synchronization at
start/end of map



Cache fusion
Maps broken to tiles
◦ each tile is executed sequentially on one core
◦ tile should fit in cache, avoid accessing main memory

Cache fusion on OpenMP
◦ Single parallel region
◦ Loop for each map has the same bounds 

and chunk size
◦ Each loop uses static scheduling

Can use both, code fusion is 
preferred



Related patterns
Stencil
◦ access to neighbors to get inputs of elemental function
◦ Important is reading of data
◦ Data reuse

◦ Hardware specific for good results (cache size, GPU memory)

Workpile
◦ Work grows as it is consumed by map
◦ Could be implemented in OpenMP and OpenCL using explicit work queues

Divide-and-conquer
◦ Recursive division into smaller parallel subproblems until base is reached, which can 

be solved sequentially
◦ Combination of partition and map patterns
◦ OpenMP: supported through tasking model
◦ OpenCL: no support for nested parallelism, extremely difficult with work queues



HPC: Reduction pattern



Reduce
A collective operation

Reduce pattern allows data to be combined
◦ Combiner function 𝑓 𝑎, 𝑏 = 𝑎 ⊗ 𝑏
◦ Pairwise operation
◦ Associativity must hold
◦ (𝑎 ⊗ 𝑏)⊗ 𝑐 = 𝑎 ⊗ (𝑏 ⊗ 𝑐)

◦ Operands can be combined in any order

◦ Floating point addition and multiplication are only
partially associative

◦ Commutativity
◦ 𝑎 ⊗ 𝑏 = 𝑏 ⊗ 𝑎

◦ Not required, but enables additional reorderings

◦ Identity
◦ reduction of empty data collection is meaningful

◦ Initial value of reduction



Tiling
Use serial algorithm where possible

Do tree-like reduction to reduce communication costs

Process
◦ Break the work to tiles

◦ Operate on tiles separately

◦ Combine partial results from tiles

Serial and tree algorithms 
◦ use the same number of application 

of the reduce function

◦ Serial algorithm requires less storage 
for intermediate results



Precision
Large summations
◦ Running out of bits to represent intermediate results

◦ Solution: use higher precision for reduction

◦ Example:
◦ Summation of a large number of equal values

◦ Expressed in single-precision arithmetic (precision to 6 or 7 decimal places)

◦ Serial approach

◦ At one point intermediate sum will be very large compared to operand 

◦ Adding will heave no effect on intermediate result

◦ Approach with tree

◦ Intermediate results will be of similar magnitude

◦ Summation of operands with similar magnitude is more accurate



Theoretical considerations
Sequential reduction of 𝑛 operands
◦ 𝑛 − 1 reductions

◦ Each invocation of reduce function costs 𝜒

◦ Total execution time 𝑡𝑠(𝑛) = 𝜒 𝑛 − 1

Parallel reduction, 𝑛 = 2𝑘 , 𝑘 ∈ ℕ
◦ Communication costs 𝜆

◦ 𝑛/2 reductions in the first stage can go in parallel, 
𝑛/4 in the second stage can go in parallel … 
1 reduction in the last stage

◦ altogether we have log2𝑛 stages with 𝑛 − 1 reductions

◦ Total execution time 𝑡𝑝(𝑛) = 𝜒 + 𝜆 log2𝑛



Fusing map and reduce
When map is feeding outputs directly into a reduction, the 
combination can be implemented more efficiently

No need for synchronization between
map and reduce stages

No need to write intermediate results to
memory or file

Map and reduce must be tiled in a same way



OpenMP continued



Distribution of work
parallel for
◦ most frequently used functionality 

of openmp

◦ Distributes iterations among threads

◦ For statement must be given in canonical shape

◦ parallel for collapse(num)
◦ enables to parallelize num perfectly nested loops together

#pragma omp parallel for
for (i=0; i<N; i++)
{

hardWork(i);
}



Distribution of work
◦ parallel for schedule(type, number)
◦ useful when workload significantly differs from iteration to iteration

◦ schedule clause 

◦ static: iterations are mapped to threads at compile time, default

◦ dynamic: when thread finishes its work, it gets new number of iterations to compute

◦ guided: each threads gets larger portion of iteration at the beginning, then the number is reduced

◦ runtime: set though environment variables

static, 1 dynamic, 1



Synchronization
Critical / atomic
◦ Only one thread enters critical section at once

◦ atomic
◦ Applicable only to scalar variable 

assignment with operators
++, --, +=, -=, *=, /=, &=, |=, <<=, >>=

◦ Faster than critical

◦ Example
◦ Correct counting although slower than with reduction

Barrier
◦ All processors must reach the barrier before any processor can proceed 



Dot product
Problem
◦ Vectors 𝒂 and 𝒃 with 𝑛 elements each 

◦ Calculate 𝒂 ⋅ 𝒃 = σ𝑖=0
𝑛−1𝑎𝑖𝑏𝑖

◦ Combination of map and reduce

◦ Map: element-wise multiplications

◦ Reduce: summation of partial sums

OpenMP implementation for 𝑝 tasks
◦ Clause reduction for limited number of operations
◦ OpenMP 4.0 will probably have possibility to specify custom reduce function

◦ Manual tree-like reduction



Dot product
Sequential tiled map with sequential reduce of intermediate results



Dot product II
Map with step-by-step reduction
◦ does not use atomic directive



Variables
Threads share global variables

Threads do not share
◦ Variables declared in parallel sections
◦ Variables of functions called from parallel sections

The scope of variable can be redeclared by clauses
◦ shared: default, no need to specify
◦ private: creates copies of global variable which are local for each thread
◦ firstprivate: like private, but also initializes local variables with current value of 

global variable
◦ lastprivate: when leaving parallel section it sets global variable to a value equal 

to the local variable of the thread which handled the last iteration
◦ threadprivate: values of local variables are kept in memory when parallel 

section is finished; useful when parallel sections are recreated



Variables
Example of using the private clause

◦ wrong result when private(j) is omitted →

◦ Correct result when using private(j)                   →



Variables
The scope of variable can be redeclared by clauses
◦ reduction(operator: variable)
◦ When entering a parallel section local copies of a global variable are allocated and initialized

◦ On parallel section exit all local copies are reduced and stored in a global variable

◦ Reduction operators: +, *, &, |, ^, &&, ||



Dot product III
Map and reduce using reduce clause


	Slide 1: HPC: Patterns
	Slide 2: Parallel programming models
	Slide 3: Parallel programming models
	Slide 4: Parallel programming models
	Slide 5: Pattern-based programming
	Slide 6: Pattern-based programming
	Slide 7: Pattern-based programming
	Slide 8: Serial Patterns
	Slide 9: Nesting
	Slide 10: Nesting
	Slide 11: Serial Control Flow Patterns
	Slide 12: Serial Control Flow Patterns
	Slide 13: Serial Control Flow Patterns
	Slide 14: Serial Control Flow Patterns
	Slide 15: Serial Control Flow Patterns
	Slide 16: Serial data management patterns
	Slide 17: Serial data management patterns
	Slide 18: HPC: Parallel Patterns
	Slide 19: Map
	Slide 20: Map
	Slide 21: Map
	Slide 22: Map
	Slide 23: Map
	Slide 24: saxpy
	Slide 26: Mandelbrot set
	Slide 27: Mandelbrot set
	Slide 29: Code fusion
	Slide 30: Cache fusion
	Slide 32: Related patterns
	Slide 33: HPC: Reduction pattern
	Slide 34: Reduce
	Slide 35: Tiling
	Slide 36: Precision
	Slide 37: Theoretical considerations
	Slide 40: Fusing map and reduce
	Slide 41: OpenMP continued
	Slide 42: Distribution of work
	Slide 43: Distribution of work
	Slide 44: Synchronization
	Slide 45: Dot product
	Slide 46: Dot product
	Slide 47: Dot product II
	Slide 48: Variables
	Slide 49: Variables
	Slide 50: Variables
	Slide 51: Dot product III

