
HPC: Parallel hardware
LECTURER: UROŠ LOTRIČ

ASSISTANT: DAVOR SLUGA

Architecture
A parallel computer
◦ Uses multiple processing elements simultaneously in a cooperative manner

Parallel processing
◦ Techniques and technologies that make computing in parallel possible

◦ Hardware, networks,

◦ Operating systems, parallel libraries, languages, compilers, algorithms, …

Parallel computing is an evolution of serial computing
◦ It is only possible when a problem is inherently concurrent
◦ Can be split into tasks which can execute at the same time

◦ Dependency must be enforced by synchronization

2

Architecture
Flynn’s characterization
◦ SISD: standard non-parallel (scalar) processor

◦ SIMD: array processor
◦ Array of functional units and a shared controller

◦ MIMD: separate instructions streams operating on separate data
◦ Multi-core, multi-processor, multiple computers, heterogeneous computer

◦ Shared and distributed memory and combinations

◦ MISD: only theoretical

◦ SIMT
◦ Single instruction multiple threads (inside warp)

◦ Tiled SIMD: each processor emulates multiple threads using masking, blocks of threads share a control
processor, divergent flow is not beneficial

◦ Preferred to access the same cache line to improve performance (opposite to classical multi-core
systems)

Architecture: von Neumann Architecture
Instructions and data are stored in memory

Machine cycle
◦ Fetch
◦ Decode
◦ Execute
◦ Store

Single instruction, single data

Memory bottleneck

Improvements
◦ Memory hierarchy
◦ Main memory, cache, virtual memory
◦ Temporal and spatial locality

◦ Parallelism in hardware
◦ Pipeline, Superscalar execution, Speculative execution,
◦ Multiple functional units, Hardware multithreading

4

Architecture: vector processor
Single instruction, multiple data

First supercomputers
◦ Data parallel problems

◦ Operate on vectors
◦ Size of problem must fit to the hardware

◦ Long and expensive development

5

Architecture: vector processor
Scalar support

Vector support
◦ Registers, functional units, instructions

◦ Operand alignment in memory

◦ Memory interleaving for faster access

Problems
◦ Size of problem and number of processing elements must fit

◦ Branching and masking
◦ Slow execution

◦ Packing groups threads with same
result to avoid masking

◦ Poor scalability

if (a&1)

a = 3*a + 1;

else

a = a/2;

p = (a&1);

t = 3*a + 1;

if (p) a = t;

t = a/2;

if (!p) a = t;

Architecture: shared memory systems
Multiple instructions, multiple data

Share common memory
◦ Processors operate independently

◦ Processors can access each others’ memory

◦ Changes in memory by one processor are
visible to the others

UMA vs. NUMA
◦ Complexity and scalability

◦ Memory access times

◦ Cache coherence and false sharing
may be magnified with NUMA

◦ UMA = SMP (Symmetric Multi Proc.)

7

Architecture: shared memory systems
Memory access
◦ One processor to one global memory module

◦ Memory divided to many modules evenly distributed among processors

Cache
◦ Each core has its own cache

◦ Cache coherence must be assured
◦ Snooping

◦ Directory protocols

Architecture: distributed memory
Multiple instructions, multiple data

Processors have their own memory

Other processors do not see memory changes

Processors exchange data by sending messages

Slower compared to shared
memory systems

More scalable

Focus on interconnections

Cost effective
◦ off-the-shelf hardware

components

9

Architecture: distributed memory
Cluster
◦ Commodity network components (Ethernet, Infiniband)
◦ Each node runs its own OS
◦ Tainhe-2b (all nodes run Kylin Linux)

Massively parallel processors (MPP)
◦ More tightly integrated
◦ Can run same instance of OS on all nodes
◦ Treats the whole machine as single OS from admin point of view

◦ More commonly only special interconnects
◦ TaihuLight (has special architecture, special OS)

Constellations
◦ More cores per node than nodes
◦ Spatial node sharing among users

10

Architecture: accelerators
Offload processing
◦ Host sends data to accelerator

◦ Host triggers computation on an accelerator

◦ Accelerator performs computation

◦ Host retrieves results

Today extremely popular model

Single instruction, multiple threads

Hierarchical design

11

Architecture: accelerators
Pros and cons of CPU and GPU

Architecture: modern systems
Modern computing resources
◦ Hierarchical organization
◦ Connects many nodes

◦ Shared memory within a node

◦ Offload systems on some nodes

◦ Message passing between nodes

◦ Heterogenous systems

Programming
◦ Reflects hardware organisation

◦ Different programming concepts
◦ Programming languages

◦ Libraries

◦ Algorithms

13

Architecture: overview
Trends

Architecture: NSC cluster

HPC: Middleware

Cluster Software
Focus on Open Source software
◦ Linux CentOS, Fedora

◦ Automation through Foreman, Puppet, Ansible

◦ Administration and metrics:
ElasticSearch, Syslog, Icinga, Nagios, IPMI

◦ Storage and data handling:
dCache, Ceph, Rucio, iRODS, BeeGFS

◦ Job scheduling: SLURM

◦ Job submission system: ARC

◦ Container and virtualization support:
Singularity, Proxmox, OpenStack

17

Cluster software
◦ Job scheduling: SLURM

◦ Job submission system: ARC

18

User software
Support for a wide range of applications
◦ HPC, BigData, AI

Basic software pre-installed
◦ GNU toolchain, MPI, Matlab

Environmental modules

Virtualization primarily through containers
◦ Singularity

◦ Provide a repository of commonly used images for HPC

◦ Each user tweaks an existing or builds its own image
according to his needs

19

User software
Containers

SLURM
Simple Linux Utility for Resource Management

Cluster management and job scheduling software
◦ Local resource management software (LRMS)

◦ Open source

◦ Fault tolerant

◦ Highly scalable

◦ A lot of plugins (accounting, network, MPI)

Key functions
◦ Allocates access to resources (compute nodes) to users

◦ Framework for starting, executing and monitoring work

◦ Arbitrates contention for resources by managing a queue of pending work

SLURM
Resource manager
◦ Needed in a parallel computer to execute parallel jobs

◦ Allocates resources within a cluster
◦ Nodes (unique IP)

◦ Sockets, cores, threads

◦ Memory

◦ Interconnect

◦ Features (GPUs, bigmem)

◦ Licences

◦ Manages jobs

◦ When there is more work than resources, the RM manages queue
◦ Complex scheduling algorithms

◦ Resource time-limit

SLURM: architecture
Slurmctld deamon on management node
◦ Monitors resources
◦ Manages job queues
◦ Allocates resources
◦ Optional fail-over twin

Slurmd deamon runs on each node
◦ Similar to remote shell
◦ waits for work, executes work, reports status

◦ Hierarchical concept
◦ Fault-tolerant communication
◦ Starts Slurmstepd deamon that runs jobs on nodes

Slurmdbs
◦ Database deamon to record accounting

information

Usertools
◦ control cluster (admin), work with jobs, check queue, …

SLURM: jobs
Job description
◦ ID, name, time limit, size specs,

special node features

Job execution sequence
1. srun sends job allocation request,

slurmctld grants it

2. srun sends job step create request,
slurmctld gives credentials
◦ credentials include resources that have been allocated

3. srun opens socket for IOs

4. srun sends credentials and task info to slurmd

5. slurmd forwards allocation to required nodes

SLURM: jobs
6. slurmd starts slurmstepd

7. slurmstepd connect IOs to srun IOs and
launches tasks

8. slurmstepd notifies srun
on task termination

9. srun notifies slurmctld on job termination

10. slurmctld verifies termination via slurmd
and releases resources

SLURM: architecture
Nodes: compute resources

Partitions: logical groups of nodes
◦ One node can reside in multiple

partitions

◦ = job queue with limitations
(size, time, users, …)

Jobs: allocations of resources
assigned to a user for some time

Job steps: sets of (possibly parallel)
tasks within a job

SLURM: jobs
squeue
◦ job states
◦ PD: pending, R: running,

◦ CA: canceled, CF: configuring

◦ CG: completing, CD: completed

◦ F: failed, TO: timeout, NF: node failure,
RV: revoked, SE: special exit state,
S: suspended, …

◦ job reasons
◦ Resources: job is waiting for compute nodes

to become available

◦ Priority: jobs with higher priority are waiting
for compute nodes

◦ ReqNodeNotAvail: the requested nodes
are not available
(cluster downtime, nodes offline, …)

SLURM: nodes
sinfo (node states)
◦ down, draining, drained, failing, fail, reboot, maintenance, power…

◦ idle, allocated, mixed, completing, reserved
◦ idle: all cores are available on the compute node

◦ mix: at least one core is available on the compute node

◦ alloc: all cores on the compute node are assigned to jobs

◦ * node is not responding, will not take new workload

Features/constraints
◦ Enables users to make specific requests

◦ sinfo --Format Features

◦ NSC features: AMD, intel, gpu, k40, bigmem

◦ -C / --constraint=…

SLURM: important commands
srun: create job allocation and launch job step
◦ blocks the shell

sbatch: submit script for later execution (batch mode)
◦ does not block the shell

◦ many possibilities for job specification
◦ job dependence (flag --dependency)

◦ run many jobs with different params …

sinfo: status of nodes

squeue: status of jobs and job steps

scontrol: job control (hold, release, show nodes…), system config

SLURM: important commands
salloc: starts shell on the first node that corresponds to given
requirements
◦ interactive work

◦ resources are specified in the same way as for srun/sbatch

◦ exit to release resources

sstat: statistics of active job

sacct: statistics of active and finished jobs

SLURM: example, running jobs
srun --ntasks=4 hostname

srun --nodes=2 --ntasks=4 hostname

#!/bin/bash

#SBATCH --job-name=ime_mojega_posla

#SBATCH --partition=gridlong

#SBATCH --ntasks=4

#SBATCH --nodes=1

#SBATCH --mem-per-cpu=100MB

#SBATCH --output=moj_posel.out

#SBATCH --time=00:01:00

srun hostname

salloc –reservation=fri –ntasks=2

srun hostname

SLURM: example, modules and containers
module load FFmpeg

module list

module spider

srun --reservation=fri ffmpeg –y -i llama.mp4 llama.avi

sstat --job=590860 --format= AveRSS,AveVMSize,MaxRSS,MaxVMSize

sacct --job=590860 --format=
cputime,AveRSS,AveVMSize,MaxRSS,MaxVMSize

singularity pull docker://jrottenberg/ffmpeg:alpine

srun --reservation=fri singularity exec ffmpeg_alpine.sif ffmpeg -y -i
llama.mp4 llama.avi

ARC (extras)
Advanced Resource Connector

Enables sharing and federation of resources across different domains

Easily integrates existing resources to grid
◦ No need for reorganization of existing cluster
◦ Cluster with batch system LRMS (Local Resource Management System)

◦ Installed on top of existing batch processor, interfaces to it

◦ Standard interface, support for many platforms

Automatically searches for computing resources based on
requirements

Able to distributes jobs to more groups at once

Administration of domain access

ARC (extras)
Advantages over SLURM
◦ Run jobs simultaneously

on multiple clusters

◦ Unified runtime
environments

◦ Data management
nodes

Disadvantages
◦ Response

◦ No possibilities for complex job
submission

ARC (extras)
Client side
◦ Client computer with ARC middleware

◦ Job submission, inquiry, result retrieval

Server side
◦ Offers 3 services: computation, storage, information

◦ Computing element (CE)
◦ Front-end interface to workstation or cluster –

integrates to LRMS (Local Resource Management System)

◦ Control of execution

ARC (extras): CE architecture
Execution service functionality
(ARC Resource-coupled EXecution system)
◦ Info:
◦ Advertise server for the clients to know about it (location, capabilities)

◦ Monitor status of jobs (info provider scripts)

◦ Jobs:
◦ Accept jobs for execution through job submission interface

◦ Forward jobs to LRMS

◦ SLURM - Simple Linux Utility Resource Management

◦ File access:
◦ Accept input files

◦ from file access interface or remote storage

◦ prevent frequent download by caching

◦ Return results

◦ file access interface or remote storage

ARC (extras): CE architecture

ARC (extras): Security on the grid
Contradiction
◦ access is offered to almost everyone but complicated with certificates

Authorization & authentication
◦ X.509 certificates
◦ Issued by member of IGTF – international grid trust federation

SiGNET (http://signet-ca.ijs.si)

Certificates
◦ Each user has personal certificate
◦ Each server has host certificate

Users are joined to virtual organization (VO)
◦ VOMS: virtual organization management service (membership and roles)
◦ FRI has its own VO: fri.vo.sling.si
◦ National test VO: gen.vo.sling.si

http://signet-ca.ijs.si/

ARC (extras): Security on the grid
Certificate x.509 requires password
◦ Automatic execution?

Certificate x.509 + password → short lived certificate proxy
◦ Basic element for authentication & authorization

◦ Delegate user‘s rights to jobs or other activities of grid services

◦ Validity 12 … 24 h

Client CA certificate and Server CA certificate must be present on
server and client

Credentials (authorization policy) are based on VO settings

ARC (extras): job description
What software to execute, what data to process, needed run-time
environment, hardware requirements

Specified as XRSL – eXtended Resource Specification Language

Accompanied with
◦ Executables (job.sh)

◦ Input files

Job length: up to 24 hours

ARC (extras): job execution
1. Client connects to job

submission interface

2. Client and server authenticate
each other

3. Execution Service authorizes
user and maps grid ID to
local user

4. Execution service acquires user credentials

5. Job description is sent from client to server

6. Job accepted and session and control directory created

7. Client copies files to session directory

8. Execution service copies files from remote locations

ARC (extras): job execution
9. Job is submitted to LRMS

10. During processing session
directory is accessible

11. Information provider
monitors the jobs and
updates control directory

12. When job is finished,
execution system keeps
or uploads files

13. Client may download resulting
files or put them to Remote storage

ARC (extras): job statuses
Job lifecycle

ARC (extras): Run-time Environments
Each research area demands specific software, libraries, tools

ARC uses the concept of
◦ run-time environments
◦ Interface to software independent of underlying hardware

◦ Shell Script

◦ installed on local computing resources

◦ Initializes variables that point to application software

◦ Setup before local job execution

◦ containers Singularity/Docker

RE configuration
◦ Basic language: C/C++
◦ Script languages: perl/bash/python

RE examples:
◦ MPI, java, python, octave, atlas

ARC (extras): commands
arcsub: job submission
◦ arcsub -c maister.hpc-rivr.um.si test.xrsl

arcstat: job stats
◦ arcstat -a

arckill: delete a job
◦ arckill <jobid>

arcget: to retrieve results
◦ arcget -a ali arcget <jobid>

arcinfo: cluster info:
◦ arcinfo nsc.ijs.si

arccat: job output
◦ arccat <jobid>

ARC (extras): ffmpeg example
XRSL script

ffmpeg-arc.xrsl

arcproxy –I

arcproxy –S fri.vo.sling.si

arcsub -c nsc.ijs.si ffmpeg-arc.xrsl * opcija tudi jost.arnes.si

arcstat –a

arcget -a

SLING
= cocktail: ice, 2 whiskey/gin, ½ lemon juice, ¼ sugar syrup, soda

= weapon

= support for broken arm

= SLovenian Initiative for National Grid

= Slovenian national supercomputing network

SLING
History (2002)
◦ Quest for God particle (Highs boson)

◦ Large Hadron Collider

◦ Whole capacity
◦ 350 centres, 1 mi. cores, 1 EB disk

◦ CERN, Atlas experiment used 15 %

Slovenia joined its capacities for international activities
◦ CERN

◦ EU projects

SLING
Formed by ARNES & IJS in 2010

Goal: national computer infrastructure for science and research

Tasks
◦ National grid service

◦ Coordination, technical development

◦ Technical support (centres, users)

◦ Integration to EU and WW infrastructures

Member of EGI (European Grid Infrastructure) as part of NorduGRID

SLING
SLING in numbers
◦ 9 active centers

◦ 35k CPU cores
◦ Maister ~28%

◦ IJS ~55 %

◦ Arnes ~12%

◦ >1 PB disk capacities

◦ 80 % Slovenian capacity

◦ 1 – 2 % EGI capacity

SLING
Access grants
◦ Personal certificate issued by SLING
◦ Research institutions, Universities, Companies subject to fees

◦ Permits access to other EU HPC systems

◦ Requests for large amounts of computational time
◦ Submit a proposal

◦ Special commission decides

◦ 1/3 owned by EC, application through EuroHPC

◦ Part of the system always available for smaller jobs

51

	Slide 1: HPC: Parallel hardware
	Slide 2: Architecture
	Slide 3: Architecture
	Slide 4: Architecture: von Neumann Architecture
	Slide 5: Architecture: vector processor
	Slide 6: Architecture: vector processor
	Slide 7: Architecture: shared memory systems
	Slide 8: Architecture: shared memory systems
	Slide 9: Architecture: distributed memory
	Slide 10: Architecture: distributed memory
	Slide 11: Architecture: accelerators
	Slide 12: Architecture: accelerators
	Slide 13: Architecture: modern systems
	Slide 14: Architecture: overview
	Slide 15: Architecture: NSC cluster
	Slide 16: HPC: Middleware
	Slide 17: Cluster Software
	Slide 18: Cluster software
	Slide 19: User software
	Slide 20: User software
	Slide 21: SLURM
	Slide 22: SLURM
	Slide 23: SLURM: architecture
	Slide 24: SLURM: jobs
	Slide 25: SLURM: jobs
	Slide 26: SLURM: architecture
	Slide 27: SLURM: jobs
	Slide 28: SLURM: nodes
	Slide 29: SLURM: important commands
	Slide 30: SLURM: important commands
	Slide 31: SLURM: example, running jobs
	Slide 32: SLURM: example, modules and containers
	Slide 33: ARC (extras)
	Slide 34: ARC (extras)
	Slide 35: ARC (extras)
	Slide 36: ARC (extras): CE architecture
	Slide 37: ARC (extras): CE architecture
	Slide 38: ARC (extras): Security on the grid
	Slide 39: ARC (extras): Security on the grid
	Slide 40: ARC (extras): job description
	Slide 41: ARC (extras): job execution
	Slide 42: ARC (extras): job execution
	Slide 43: ARC (extras): job statuses
	Slide 44: ARC (extras): Run-time Environments
	Slide 45: ARC (extras): commands
	Slide 46: ARC (extras): ffmpeg example
	Slide 47: SLING
	Slide 48: SLING
	Slide 49: SLING
	Slide 50: SLING
	Slide 51: SLING

