
HPC: Introduction
LECTURER: UROŠ LOTRIČ

ASSISTANT: DAVOR SLUGA

Course goals
Understanding of parallel computer design

Programming of parallel computer systems

Pattern-based parallel programming

Practical experience using a parallel cluster

Background on parallel performance modelling

Course plan
Introduction
◦ Architecture

◦ Performance models and analysis

Parallel programming patterns
◦ Parallel programming from a point of view of parallel computation patterns

◦ Map, Collectives, Data reorganization, Stencil and recurrence, Fork-Join, Pipeline

Shared memory programming
◦ OpenMP, OpenCL

Distributed memory programming
◦ OpenMPI

Algorithms
◦ Detailed analysis of some interesting algorithms

Course data
web:
◦ https://ucilnica.fri.uni-lj.si/hpc

e-mail:
◦ uros.lotric@fri.uni-lj.si

◦ davor.sluga@fri.uni-lj.si

Contact hours:
◦ Uroš Lotrič: before lectures or scheduled by e-mail

https://ucilnica.fri.uni-lj.si/hpc
mailto:Uros.lotric@fri.uni-lj.si
mailto:davor.sluga@fri.uni-lj.si

Course Assignments
Parallel programming lab
◦ Exercises for parallel programming patterns

◦ Programming approaches: Embarrassingly parallel, OpenMP, OpenCL, MPI

Team term project
◦ Programming, presentation, paper

◦ Team project presentations at the end of semester (last week of May)

(Oral) exam
◦ Midterm, early May or end of semeser?

Grading
◦ 1/3 Labs & homework + 1/3 Project + 1/3 Exam

Course tools
Tools:
◦ C language

◦ OpenMP, OpenCL, OpenMPI

◦ OS Linux

Course literature
M. McCool, A. Robinson, J. Reinders: Structured Parallel
Programming: Patterns for Efficient Computation, Morgan Kaufmann,
2013

R. Trobec, B. Slivnik, P. Bulić, B. Robič: Introduction to Parallel26

Computing, Springer, 2018

P. S. Pacheco: An introduction to parallel programming, Morgan
Kaufmann, 2011

M.J. Quinn: Parallel programming in C with MPI and OpenMPI, Mc
Graw Hill, Boston, 2003

Motivation
Natural sciences
◦ Everlasting pursuit of realism

◦ Simulations help us better understand the nature

◦ Are much more cost and time effective compared to real-world experiments

◦ Applications
◦ Weather forecasting, material sciences, nuclear physics,

◦ Chemistry, lattice QCD, biochemistry, life sciences, genomics

8

Motivation
Data analytics
◦ Large quantities of data are collected

◦ Retrieving knowledge from data

◦ Confirmation of models

◦ Statistical and artificial intelligence modelling

◦ Applications
◦ High-Energy Physics, Astrophysics,

◦ Artificial Intelligence, Deep Learning

◦ Image and signal processing, robotics

9

Motivation
Ever growing need for enormous computing and
data processing resources

10

Source: A CLOSER LOOK AT 2016 TOP 500 SUPERCOMPUTER RANKINGS,
https://www.nextplatform.com/2016/11/14/closer-look-2016-top-500-supercomputer-rankings/

Motivation: huge computer resources

11

1. Summit
Oak Ridge, USA
Rmax: 148.6 Pflop/s

2. Sierra
Livermore, USA
Rmax: 94.6 Pflop/s

3. Sunway TaihuLight
Wuxi, China
Rmax: 93.0 Pflop/s

4. Tianhe-2A
Guangzhou, China
Rmax: 61.4 Pflop/s

5. Frontera
Austin, USA
Rmax: 61.4 Pflop/s

Source: top500.org, November 2019

Motivation: huge computer resources
Europe is awakening

EuroHPC initiative
◦ Three pre-exascale systems by 2020/21 (>200 Petaflop/s)

◦ Five petascale systems by 2020/21 (~10 Petaflop/s)

◦ Two exascale systems in 2022/23

◦ Post-exascale system afterwards

12

Motivation: EuroHPC JU – systems
Finland
◦ LUMI
◦ Pre-exascale (>200 Petaflop/s)
◦ Location: Kajaani

Italy
◦ Leonardo
◦ Pre-exascale (>270 Petaflop/s)
◦ Location: Bologna

Spain
◦ MareNostrum 5
◦ Pre-exascale (>200 Petaflop/s)
◦ Location: Barcelona

13

Motivation: EuroHPC JU – systems
Bulgaria
◦ PetaSC

◦ Petascale (~5 Petaflop/s)

◦ Location: Sofia

Czech Republic
◦ EURO_IT4I

◦ Petascale (~13 Petaflop/s)

◦ Location: Ostrava

Luxembourg
◦ MeluXina

◦ Petascale (~10 Petaflop/s)

◦ Location: Bissen

Portugal
◦ Deucalion

◦ Petascale (~10 Petaflop/s)

◦ Location: Minho

14

Motivation: EuroHPC JU – systems
Slovenia is going Petascale!

VEGA
◦ Performance: ~10 Petaflop/s
◦ Location: Maribor
◦ Lead organization: Institute of Information Sciences Maribor
◦ Total budget: ~30 million €
◦ Collaborators: IZUM, UM, FIŠ, SLING

Goals
◦ Upgrade existing HPC capabilities
◦ Provide infrastructure for open research data
◦ Data storage for Slovenian R&D
◦ Offer computational capacities to industry
◦ International cooperation

15

Motivation: HPC Maister@UM
Prototype system

Testing in progress

Configuration
◦ ~220 Tflop/s
◦ 76 CPU compute nodes with 4864 cores
◦ 2 x AMD EPYC 7501, 512GB RAM, 2TB SSD

◦ 48 + 28 (connected with Infiniband)

◦ 6 GPU compute nodes with 24 GPUs
◦ 2 x Intel Xeon Gold 6128, 512GB RAM, 2TB SSD, 4x nVidia V100

◦ 3 general purpose servers with 192 cores
◦ 3 SSD servers with 140 TB of fast storage
◦ Infiniband HDR100 and Ethernet 100Gb/s

HPC Trdina@FIŠ
◦ Small system for educational purposes

16

Motivation: HPC Vega@IZUM
Full system (~10 Pflop/s)
◦ Deployed in April 2021

◦ Energy consumption ~1 MW total

◦ https://doc.vega.izum.si/architecture/

◦ Computational power
CPU: GPU = 50: 50
◦ 768 (0,25TB)+ 128 CPU (1TB) compute nodes with 122.880 cores

◦ 60 GPU compute nodes with 240 Nvidia Tesla A100

◦ ~30 general purpose servers
◦ Login nodes, front ends, databases, data transfer, virtual machines, …

◦ 1PB of SSD storage and 18PB of HDD storage

◦ Network: WAN 500 Gb/s, LAN 100 Gb/s low latency

17

https://doc.vega.izum.si/architecture/

Motivation: NSC@IJS
Hardware
◦ 1984 cores
◦ Nodes: 8 x 32 cores + 27 x 64 cores

◦ 16 GPUs NVidia Tesla Kepler 40
◦ 9216 GB RAM
◦ Some new nodes
◦ LAN
◦ 1 Gb/s, 10 Gb/s for storage
◦ InfiniBand 56 Gb/s

◦ WAN
◦ 10 Gb/s

Software
◦ Middleware NorduGrid ARC
◦ Batch system: SLURM
◦ OS Centos
◦ Specific SW in runtime environments
◦ Light virtualization (Singularity HPC)

Motivation: HPC applications

19

Motivation: Slovenia HPC Fan Club
Slovenian Environment Agency

Institute Jožef Stefan

National Institute of Chemistry

Faculty of Mechanical Engineering

Turboinstitute

20

Motivation: HPC applications
Two primary reasons
◦ Faster time to solution (response time)

◦ Solve bigger computing problems (in the same time)

Other factors that motivate parallel processing
◦ Effective use of machine resources

◦ Cost efficiencies

◦ Overcoming memory constraints

Parallelism = concurrency + parallel HW + performance

Motivation: HPC applications
How does my application scale?

I have a specific problem, none of the packages fits.
How to solve it more efficiently?

How to develop such nice tools and packages?

There is a new technology available.
◦ Can my problem make use of it?

◦ How to adapt my program for it?

22

Motivation: Pervasive parallelism
Hardware trends are encouraging parallelism
◦ Moore’s Law
◦ Number of transistors doubles every 18 months,

◦ Still stands, last years more diversity

◦ Till 2004: smaller components, increasing clock rates, hardware changes

23

Motivation: Pervasive parallelism
Hardware trends are encouraging parallelism
◦ Dynamic power increase to 130 W,

◦ After 2004: Greater efficiencies, lower power solutions

24

Motivation: Pervasive parallelism
Hardware trends are encouraging parallelism
◦ Two is better than one

25

f1

U1

C1

P1 = k C1 f1 U1
2

f2 = 0.5 f1

C2 = 1.2 C1

U2 = 0.6 U1

P2 = 2 k C2 f2 U2
2 = 0.43 P1

𝑃 = 𝑈0𝐼 = 𝑈0
𝑑𝑒

𝑑𝑡
= 𝑈0𝐶

𝑑𝑈

𝑑𝑡

𝑈=𝑈0sin 2𝜋𝑓 𝑡

𝑑𝑈

𝑑𝑡
=2𝜋𝑓𝑈0 cos 2𝜋𝑓 𝑡

𝑃 = 𝑈0𝐶
𝑑𝑈

𝑑𝑡
= 2𝜋𝐶𝑓𝑈0

2

Motivation: Pervasive parallelism
Three walls in 2005
◦ Power wall
◦ unacceptable growth in power usage with clock rate

◦ Instruction Level Parallelism wall
◦ limits on hardware parallelism

◦ Superscalar instructions (simultaneous execution of unrelated instructions)

◦ Very Large Instruction Word (compiler analysis)

◦ Pipelining

◦ Speculative techniques: branch prediction and prefetching (cache)

◦ Memory wall
◦ huge discrepancy of processor speeds relative to memory speeds

◦ off-chip communication is slow and power hungry

◦ cache helps, but is more complicated than on a single CPU

◦ latency and bandwidth

◦ problems with scalability

Motivation: Pervasive parallelism
Three walls in 2005
◦ Need to write explicitly parallel programs

◦ New processor designs provide multiple mechanisms for explicit parallel
programming

◦ You must use them and use them well for good scalability

◦ If you write a program for scalable parallelism, it will continue to scale on new
processors with more and more parallelism available

Historical trends
Hardware is naturally parallel
◦ Parallelism in hardware has been present since the earliest computers

◦ Great sophistication in mainframe and vector supercomputers (late 1980)

Miniaturization
◦ Intel 4004 4-bit microprocessor with 2300 transistors

◦ Today million times more transistors, a lot of potential

◦ Improvements over the years:
◦ word sizes,

◦ superscalar capabilities, vector instructions, out-of-order execution, deep pipelines, parallel arithmetic
units, multithreading,

◦ caches, cache prefetching, virtual memory controllers, page table walking, memory access controllers,

◦ graphics processing units

Historical trends
Term supercomputer is first used during development of
Cray-1, 1976, 10 mio. USD, Los Alamos National Laboratory

At the end of seventies they are introduced to petrol and automotive
industry

In eighties they come to business world

Why?
◦ Faster computations gives competitive advantage

◦ Less experiments means cheaper development

◦ Faster development of new products

Historical trends
First supercomputers were vector computers
◦ High price, slow development

Today supercomputers are distributed computer systems
◦ Massive production, faster development

◦ Cheaper systems, step-by-step upgrade

Historical trends
Supercomputing in Slovenia
◦ CONVEX SPP1000/XA-64
◦ 64 processors, 6.19 Gflop/s

◦ 8 mio. USD, IJS, 1992

◦ Grid of workstations
◦ Today each CPU core is capable of ~10 Gflop/s

Historical trends
Modern parallel computers
◦ Standard computer in institutes: DEC VAX 11/780, 1 MFLOPS

◦ 1981: Cosmic Cube:
◦ 64 Intel 8086 processors (XT), 5 – 10 MFLOPS, za 1/2 VAX price

◦ 1986: Connection Machine, Thinking Machine Corporation,
◦ 1 CPU, many ALUs

◦ 1994: Beowulf, NASA,
◦ 16 standard Intel DX processors connected to 10 Mbit Ethernet, Linux

◦ 1996: cluster for less than 50k USD is capable of 1 Gflop/s

◦ 2019:
◦ Summit (1st) and Sierra (2nd) equipped with nVidia Tesla V100 GPUs

◦ TaihuLight (3rd) only processors

◦ Tianhe-2A (4th) processors and Matrix-2000 accelerators (replacement for Xeon Phi due to USA ban)

◦ Trinitry (7th) equipped with Xeon Phi processors

HPC: Parallel hardware
LECTURER: UROŠ LOTRIČ

ASSISTANT: DAVOR SLUGA

Recall: von Neumann architecture
Instructions and data are stored in memory

Machine cycle
◦ Fetch
◦ Decode
◦ Execute
◦ Store

Single instruction, single data

Memory bottleneck

Improvements
◦ Memory hierarchy
◦ Registers, cache, main memory, virtual memory
◦ Temporal and spatial locality

◦ Parallelism in hardware
◦ Pipeline, Superscalar execution, Speculative execution,
◦ Multiple functional units, Hardware multithreading

34

Recall: Memory
Memory hierarchy
◦ Registers, caches, main memory, virtual memory
◦ Access to main memory is two orders of magnitude slower than to the cache

◦ Cache
◦ Organized in cache lines (256B)

◦ Coherent memory access

◦ Latency (crucial) and bandwidth

Recall: Cache
Block of memory is always transferred
◦ Make use of temporal and spatial locality

◦ If data is missing, processor still waits
◦ Less frequent than without cache

◦ example
float z[1000];

sum = 0;

for(i=0; i<1000; i++)

sum += z[i];

◦ Multi-stage memory
◦ Caches L1, L2, L3

◦ Main memory

◦ Virtual memory

Recall: Cache
Cache hit

Cache miss
◦ Copying from the main memory

◦ Where to copy?
◦ Delete the oldest block

◦ Associative: all blocks are equivalent

◦ Set-associative: some possible locations

◦ Direct: exact mapping of main memory block to cache locations

Reading and writing
◦ Coherence
◦ Write-through: when writing to cache, data is also written to main memory

◦ Write-back: dirty bit is set in cache when writing, when block is about to be overwritten, it’s content is
first written to the main memory

Recall: Cache
Example of cache misses
◦ Matrix A is stored row-wise

◦ Cache size is 4 doubles

double A[MAX][MAX], x[MAX], y[MAX];

for(i=0; i<MAX; i++)

for(j=0; j<MAX; j++)

y[i] += A[i][j]*x[j];

for(j=0; j<MAX; j++)

for(i=0; i<MAX; i++)

y[i] += A[i][j]*x[j];

Recall: Virtual memory
Extends main memory

Page size 4 MB

Page fault
◦ disk access latency much higher (1.000.000) than cache miss, takes to resolve
◦ Importance of data locality
◦ Rapid virtual to physical memory address mapping (TLB)

TLB (Translation Lookaside Buffer)
◦ Specialized cache for address translation (up to 128 entries on 1st level)
◦ TLB miss:
◦ access to a page not in TLB, walking over the whole page table to find translation

◦ Example: stencil @ large 3D array: row, column, page access

◦ Element by element walk, number of pages can be large

◦ High TLB miss rate when accessing neighbouring elements even when number of page faults is low

◦ If the 3D array is big, a high page fault rate may also result

Recall: Instruction level parallelism
Pipeline
◦ Functional units are arranged in stages

◦ Stages should be of similar complexity

◦ Summation of two floating point numbers
◦ 1,23e4 + 6,54e3

◦ reading, exponent comparison, alignment of exponents, summation, normalization, rounding, storing

◦ Number of cycles for 1 and for 100 summations?

Recall: Instruction level parallelism
Vector instructions
◦ Explicit usage of multiple functional units specified by operation on small

amount of data

◦ Special instructions

Parallel arithmetic units
◦ Parallelism in single thread

◦ Two units:
◦ one is summing odd and the other even indices

for(i=0; i<1000; i++)

z[i] = x[i] + y[i]

Recall: Instruction level parallelism
Superscalar
◦ Parallel execution of non-dependable instructions

◦ Allocation of functional units is dynamic, at runtime
(for non-superscalar processors is static, at compile time)

◦ Example: parallel arithmetic units with dynamic allocation

◦ Example: speculative execution

◦ if(x > 0) and assignment z = x + y are performed in parallel

if(x > 0)

{

z = x + y;

w = x;

}

else

w = y;

Recall: Instruction level parallelism
Hardware multithreading
◦ No need to search for parallelism in sequential thread
◦ In many cases does not exist

◦ Simultaneous multithreading
◦ instructions from multiple threads feed to superscalar scheduler (dynamic, at runtime)

◦ Switch-on event multithreading
◦ Latency hiding

◦ when one thread stops due to memory or IO access, another can be processed

◦ Rapid switching of threads at long-latency operations

Serial illusion
Developments in hardware have led to long-sustained serial illusion

Serial traps: Serial assumptions incorporated in tools and thinking
◦ Language design

◦ Compilers are not reliable at discovering parallelism
◦ Loops, memory access through pointers in C

