Deep Learning

Conclusion

Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science

Academic year: 2022/23

Machine learning

Deep learning

Key factors for fair decision making

Learning regimes

- Supervised learning
- Weakly supervised learning
- Semisupervised learning
- Unsupervised learning
- Self-supervised learning
- Reinforcement learning

Learning regimes

Deep reinforcement learning

RL for goal-driven mapless navigation

- Local vs. global navigation.
 - Local navigation connects robot with global plan
 - Relying only on sensor readings
 - Dealing with unforeseen changes
 - Dynamic environment, robot in populated space
 - New environment...
- Data driven local navigation
 - Learning only
 - Learning DWA parameters

Deep reinforcement learning

- Training in simulation
 - ~ 600 epochs, 3M steps
- Learned policy transferred to the real robot

Learning only approach

Dobrevski & Skočaj, 2021

- Navigation as POMDP
- Sensor readings -> actions

DRL for Adaptive DWA

- Classic approaches (DWA)
 - Provide safety mechanisms, smooth trajectories
 - Are not optimised for specific situation
- Learning-based approaches
 - Require additional safety mechanisms
- => merry learning and DWA -> ADWA

ADWA ANFIS DWA

Dobrevski & Skočaj, 2020

method	# completed ep.
Best DWA[7]	294
ANFIS DWA[15]	340
Ours	520

Built-in vs. learned

- Goal-driven mapless navgation
- Constraining the problem with background knowledge

Beyond CV and NLP

- Use CV methods to detect specific patterns, or segment images, or track objects in other domains
- Transform data from other modalities in image-like data and use CV methods
- Use deep learning as a primary tool for problem solving
- Use deep learning for efficient optimisation
- Use deep models as efficient function approximators

Function approximator

- Deep model as a function approximator
- Different training possibilities:

function	known	unknown
$f(x) \doteq y$	x _{tr} , y _{tr}	f
f(x)	x_{tr}	f
$f(x) \doteq \hat{f}(x)$	x_{tr} , \hat{f}	f
$f(f^{-1}(y)) \doteq y$	y_{tr} , f^{-1}	f
$f(g(x)) \doteq y$	g, x_{tr}, y_{tr}	f
$g(f(x)) \doteq y$	g, x_{tr}, y_{tr}	f

Development, deployment and maintenance

- Data, data, data!
 - Enough data, representative data
 - Correctly annotated data
- Appropriate deep architecture design
 - Proper backbone, architecture, loss function, ...
 - Learning, parameter optimisation
- Efficient implementation
 - Execution speed
 - Integration
- Maintenance
 - Incremental improvement of the learned model
 - Reflecting to changes in the environment

Development of deep learning solutions

Knowledge and experience count

Problem solving

Problem complexity

Adequate tools

Openness of problems

Advancement of artificial intelligence

