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Deep learning
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Key factors for fair decision making
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Learning regimes

▪ Supervised learning

▪ Weakly supervised learning

▪ Semisupervised learning

▪ Unsupervised learning

▪ Self-supervised learning

▪ Reinforcement learning
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Learning regimes
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Deep reinforcement learning
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RL for goal-driven mapless navigation

▪ Local vs. global navigation.

▪ Local navigation connects robot with global plan

▪ Relying only on sensor readings

▪ Dealing with unforeseen changes

▪ Dynamic environment, robot in populated space

▪ New environment...

▪ Data driven local navigation

▪ Learning only

▪ Learning DWA parameters
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Deep reinforcement learning

▪ Training in simulation

▪ ~ 600 epochs, 3M steps

▪ Learned policy transferred 
to the real robot
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Learning only approach

▪ Navigation as POMDP

▪ Sensor readings -> actions

Dobrevski & Skočaj, 2021

https://journals.sagepub.com/doi/10.1177/1729881421992621
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DRL for Adaptive DWA

▪ Classic approaches (DWA)

▪ Provide  safety mechanisms, smooth trajectories

▪ Are not optimised for specific situation

▪ Learning-based approaches

▪ Require additional safety mechanisms

▪ => merry learning and DWA -> ADWA

Dobrevski & Skočaj, 2020

https://ras.papercept.net/images/temp/IROS/files/2250.pdf
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Built-in vs. learned

▪ Goal-driven mapless navgation

▪ Constraining the problem with background knowledge

Engineering 
approach

Engineering approach+ 
deep learning

Learning only
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Beyond CV and NLP

▪ Use CV methods to detect specific patterns, 
or segment images, or track objects in 
other domains

▪ Transform data from other modalities in 
image-like data and use CV methods

▪ Use deep learning as a primary tool for 
problem solving

▪ Use deep learning for efficient optimisation

▪ Use deep models as efficient function 
approximators
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Function approximator

▪ Deep model as a function approximator

▪ Different training possibilities:

function known unknown

𝑓 𝑥 ሶ= 𝑦 𝑥𝑡𝑟 , 𝑦𝑡𝑟 𝑓

𝑓 𝑥 𝑥𝑡𝑟 𝑓

𝑓 𝑥 ሶ= መ𝑓(𝑥) 𝑥𝑡𝑟 , መ𝑓 𝑓

𝑓 𝑓−1(𝑦) ሶ= 𝑦 𝑦𝑡𝑟 , 𝑓
−1 𝑓

𝑓 𝑔(𝑥) ሶ= 𝑦 𝑔, 𝑥𝑡𝑟 , 𝑦𝑡𝑟 𝑓

𝑔 𝑓(𝑥) ሶ= 𝑦 𝑔, 𝑥𝑡𝑟 , 𝑦𝑡𝑟 𝑓
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Development, deployment and maintenance

• Data, data, data!
• Enough data, representative data

• Correctly annotated data

• Appropriate deep architecture design
• Proper backbone, architecture, loss function, …

• Learning, parameter optimisation

• Efficient implementation
• Execution speed

• Integration

• Maintenance
• Incremental improvement of the learned model

• Reflecting to changes in the environment
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Development of deep learning solutions
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Knowledge and experience count
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Problem solving

Routine solutions Rule-based solutions Data-driven solutions General intelligence
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Problem complexity

Required intelligence

Required level of abstraction

Openness of problems

Routine solutions Rule-based solutions Data-driven solutions General intelligence
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Adequate tools

Routine solutions Rule-based solutions Data-driven solutions General intelligence
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Openness of problems

Routine solutions Rule-based solutions Data-driven solutions General intelligence
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Advancement of artificial intelligence
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