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Key factors for fair decision making
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Learning regimes

= Supervised learning

= Weakly supervised learning
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= Semisupervised learning

= Unsupervised learning
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= Self-supervised learning

= Reinforcement learning D
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Deep reinforcement learning

Agent  f—0(1 | ;. .......

Sensors

State, Reward Action *
St, Tt a e T '

: Sensor Data :
' \ The promise of

Environment J Feature Extraction

] Deep Learning

r

5 Representation 51—
_________ R

Reward r Machlne*Learmng

Agent | Knowledge *—

_______ === ———

v

Reasoning

Take action a Environment ¢ The promise of
& Planning — Deep
parameter® ' [ (||  e----- Yo Reinforcement

' Acti : i
LA c i“" Learning

state

Observe state s

Deep Learning — Conclusion



RL for goal-driven mapless navigation

= Local vs. global navigation.
= Local navigation connects robot with global plan
= Relying only on sensor readings
= Dealing with unforeseen changes
= Dynamic environment, robot in populated space
= New environment...
= Data driven local navigation
= |Learning only
» Learning DWA parameters
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Deep reinforcement learning

= Training in simulation
~ 600 epochs, 3M steps

= |earned policy transferred
to the real robot

Simulation Real world
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Learning only approach Dobrevski & Skocaj, 2021

= Navigation as POMDP
= Sensor readings -> actions
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https://journals.sagepub.com/doi/10.1177/1729881421992621

DRL for Adaptive DWA

Dobrevski & Skocaj, 2020

= (Classic approaches (DWA)
= Provide safety mechanisms, smooth trajectories
= Are not optimised for specific situation

= |Learning-based approaches
= Require additional safety mechanisms

= => merry learning and DWA -> ADWA
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ADWA
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DWA
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https://ras.papercept.net/images/temp/IROS/files/2250.pdf

Built-in vs. learned

= (Goal-driven mapless navgation
= Constraining the problem with background knowledge
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Beyond CV and NLP
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= Use CV methods to detect specific patterns, ;vw s ‘*’w
or segment images, or track objects in é“%&'ﬁ»ﬁ Wy

other domains

= Transform data from other modalities in
image-like data and use CV methods

= Use deep learning as a primary tool for
problem solving

= Use deep learning for efficient optimisation

= Use deep models as efficient function ¥e —
approximators -
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Function approximator

= Deep model as a function approximator
= Different training possibilities:
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Development, deployment and maintenance

e Data, data, data!

* Enough data, representative data
* Correctly annotated data

* Appropriate deep architecture design
* Proper backbone, architecture, loss function, ...
* Learning, parameter optimisation

* Efficient implementation
* Execution speed
* [ntegration

* Maintenance
* Incremental improvement of the learned model
» Reflecting to changes in the environment
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Development of deep learning solutions
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Knowledge and experience count
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Problem solving

Routine solutions
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Rule-based solutions

Data-driven solutions
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Problem complexity

Openness of problems

Required level of abstraction

Required intelligence

Routine solutions
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Rule-based solutions Data-driven solutions

General intelligence




Adequate tools

Routine solutions Rule-based solutions Data-driven solutions General intelligence

Deep Learning — Conclusion




Openness of problems

Routine solutions
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Rule-based solutions

Data-driven solutions
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Advancement of artificial intelligence

<
20
-

Capability

Low

=~

-

Routine solutions

Rule-based solutions

Data-driven solutions

General intelligence

A Y
,l

£ 2023

(

human machine @-

Deep Learning — Conclusion



	Diapozitiv 1: Deep Learning  Conclusion
	Diapozitiv 2: Machine learning
	Diapozitiv 3: Deep learning
	Diapozitiv 4: Key factors for fair decision making
	Diapozitiv 5: Learning regimes
	Diapozitiv 6: Learning regimes
	Diapozitiv 7: Deep reinforcement learning
	Diapozitiv 8: RL for goal-driven mapless navigation
	Diapozitiv 9: Deep reinforcement learning
	Diapozitiv 10: Learning only approach
	Diapozitiv 11: DRL for Adaptive DWA
	Diapozitiv 12: Built-in vs. learned
	Diapozitiv 13: Beyond CV and NLP
	Diapozitiv 14: Function approximator
	Diapozitiv 15: Development, deployment and maintenance
	Diapozitiv 16: Development of deep learning solutions
	Diapozitiv 17: Knowledge and experience count
	Diapozitiv 18: Problem solving
	Diapozitiv 19: Problem complexity
	Diapozitiv 20: Adequate tools
	Diapozitiv 21: Openness of problems
	Diapozitiv 22: Advancement of artificial intelligence

