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Discriminative vs. Generative models

▪ Discriminative models

▪ Generative models

generative model

model built with machine learning that models the distribution of training 

examples, thereby predicting the probability of occurrence for each individual 

sample, it is also used for generating new samples similar to the training 

examples.

discriminative model

model, typically built with supervised learning, that models the conditional 

probability distribution of the target predictive value given the input instance, 

for example by finding a decision boundary between different classes, it is also 

used for classification or regression. 𝑃(𝑦|𝑥)

𝑃 𝑥 , 𝑃(𝑥, 𝑦)
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Generative models

▪ Simple models

▪ GMM, PCA

▪ Autoencoders

▪ Variational Autoencoders

▪ Generative Adversarial Networks

▪ Normalizing Flows

▪ Diffusion Models
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Gaussian, GMM

▪ Normal distribution

▪ Gaussian mixture models

Pred(x)

Kristan et al., 2009Wyatt et al., 2009

https://prints.vicos.si/publications/97/online-kernel-density-estimation-for-interactive-learning
https://www.researchgate.net/publication/224186602_Self-Understanding_and_Self-Extension_A_Systems_and_Representational_Approach#fullTextFileContent
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Principal Component Analysis

▪ Features: PCA coefficients

= + a1 + a2 + a3 +…
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Skočaj, 2003

https://prints.vicos.si/publications/212/robust-subspace-approaches-to-visual-learning-and-recognition
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PCA algorithm

Input: data matrix

Output: mean value    , eigenvectors    , eigenvalues    .

1. Estimate the mean vector:                        .

2. Center the input data around the mean:                          .

3. if M ≤ N then

4. Estimate the covariance matrix :                    .

5. Perform SVD on    . Obtain eigenvectors     and eigenvalues   .

6. else

7. Estimate the inner product matrix:                     . 

8. Perform SVD on    . Obtain eigenvectors     and eigenvalues   .

9. Determine the eigenvectors    :                                       .

10. Determine the eigenvalues            .

11. end if
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Projection and reconstruction

▪ A subset of principal components suffices for a good approximation of the input 
data.

▪ Use only k, k<<N principal axes

▪ Projection:

▪ Reconstruction:

▪ PCA minimizes the squared reconstruction error:
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Robust projection

▪ Reconstruction error:

▪ Instead of projection solve a system of linear equations!

▪ Only a subset of pixels can be used

▪ Projection in the presence of missing data!

=        + a1 + a2 + a3                ...

=        + a1      + a2                   + a3                ...

=        + a1 + a2                  + a3                 ...

…

Leonardis & Bischof, 2000

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.324.870&rep=rep1&type=pdf
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Robust projection

▪ Instead of using the standard approach for projection:

▪ Select a subset of pixels 

▪ Find a robust solution of equations.

▪ Perform multiple hypotheses.

▪ Hypothesize-and-test paradigm

▪ Competing hypotheses are subject 
to a selection procedure based on 
the MDL principle.

▪ Robust algorithm is able to reconstruct
missing/corrupted pixels

=        + a1 + a2 + a3           + …

=        + a1 + a2 + a3           + …

=        + a1 + a2 + a3           + …

…
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Robust projection

non-occluded 
training images
reconstructed     

non-occluded images
non-robustly 
reconstructed    

occluded images

occluded images robustly 
reconstructed    

occluded images

GT occl. rec.GT non-rob. rob.

Fidler et al., 2006

https://www.researchgate.net/publication/7252777_Combining_reconstructive_and_discriminative_subspace_methods_for_robust_classification_and_regression_by_subsampling#fullTextFileContent
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Robust projection

▪ Appearance-based localisation

standard robust

Jogan & Leonardis, 2003

https://www.academia.edu/12932800/Robust_localization_using_an_omnidirectional_appearance_based_subspace_model_of_environment
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PCA is a linear autoencoder

DecoderEncoder

−𝜇 ෩𝑼𝑇 +𝜇෩𝑼

𝑰𝑖 ෨𝑰𝑖

ℒ 𝜇, ෩𝑈 = 𝑰𝑖 − ෨𝑰𝑖
2

𝜇, ෩𝑈 = argmin
𝜇∗, ෩𝑈∗

ℒ 𝜇∗, ෩𝑈∗

𝒙𝑖 ~105

𝒚𝑖 ~101

෥𝒙𝑖 ~105
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Autoencoder

DecoderEncoder𝑰𝑖 ෨𝑰𝑖

ℒ 𝜇, ෩𝑈 = 𝑰𝑖 − ෨𝑰𝑖
2

𝜇, ෩𝑈 = argmin
𝜇∗, ෩𝑈∗

ℒ 𝜇∗, ෩𝑈∗

𝒙𝑖 ~105

𝒚𝑖 ~101

෥𝒙𝑖 ~105

▪ z - Latent representation

▪ Self-supervised learning – reconstruction loss with no labels required
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Autoencoder

Encoder𝑰𝑖

𝒙𝑖
𝒚𝑖

▪ z - Latent representation

▪ Self-supervised learning – reconstruction loss with no labels required

▪ Self-supervised pretraining and supervised fine-tunning

c

Fine-tune encoder on a down-stream task
(e.g., classification)
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Masked autoencoders

▪ Masked Autoencoders Are Scalable Vision Learners

▪ Self-supervised learning of representtaions (pre-training)

▪ Scalable architecture for vision learning tasks

▪ Autoregressive modelling

▪ Improves downstream tasks

▪ classification

▪ detection

▪ segmentation

▪ Partial fine-tunning

▪ Encoder

▪ on unmasked patches only

▪ Decoder

▪ on full set of tokens

▪ Lightweight

▪ MSE on masked patches

He et al., 2022

https://openaccess.thecvf.com/content/CVPR2022/papers/He_Masked_Autoencoders_Are_Scalable_Vision_Learners_CVPR_2022_paper.pdf
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MAE results
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MAE results

ImageNet1k classification

COCO object detection and segmentation

ADE20K semantic segmentation

Partial
fine-tunning

He et al., 2022

https://openaccess.thecvf.com/content/CVPR2022/papers/He_Masked_Autoencoders_Are_Scalable_Vision_Learners_CVPR_2022_paper.pdf
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Autoencoders for anomaly detection

▪ Train only on good samples

▪ Unable to reconstruct anomalies

▪ Check the reconstruction error

Bergman et al., 2018

https://arxiv.org/abs/1807.02011
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Autoencoders for inpainting and anomaly detection

Zavrtanik et al., 2021

https://prints.vicos.si/publications/393/reconstruction-by-inpainting-for-visual-anomaly-detection
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Autoencoders for inpainting and anomaly detection
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Generative vs. discriminative approaches

▪ Generative models

▪ Good approximation of data 

▪ Unsupervised learning

▪ General, task-independent

▪ Not very compact, redundant 
representations (for a particular task)

 Enable reconstruction and outlier detection

▪ Discriminative models

▪ Supervised learning

▪ Task-dependent

▪ Compact representations

▪ No reconstruction (low dimensional 
projections)

 Do not enable reconstruction and detection 
of outliers

 Combine reconstructive model and 
discriminative classifier

Fidler et al., 2006 Zavrtanik et al., 2021

https://www.researchgate.net/publication/7252777_Combining_reconstructive_and_discriminative_subspace_methods_for_robust_classification_and_regression_by_subsampling#fullTextFileContent
https://arxiv.org/abs/2108.07610
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Combining reconstruction and discrimination

▪ Combining reconstruction and discrimination improves results

Zavrtanik et al., 2021

https://arxiv.org/abs/2108.07610
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Combining reconstruction and discrimination

Zavrtanik et al., 2021

https://arxiv.org/abs/2108.07610
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AE recap

▪ Neural network architecture for unsupervised learning and dimensionality 
reduction.

▪ Comprises of an encoder and a decoder.

▪ Encoder compresses input data into a lower-dimensional latent representation.

▪ Decoder reconstructs the original input from the latent space.

▪ Reconstruction loss is used to train 
the model to minimize the difference 
between the input and the output.

▪ Autoencoders can learn meaningful 
representations and denoise data.

▪ They are used for data compression, 
feature extraction, and anomaly detection.

▪ Variants include sparse autoencoders, denoising 
autoencoders, and convolutional autoencoders.

▪ Widely used in various domains, including 
image processing, natural language processing, and recommendation systems.

x x~

z
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Autoencoder latent representation

▪ Autoencoder minimizes the reconstruction error

▪ No constraints for the distribution of z

x x~

z

L2(X,X)
~
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Variational autoencoder

▪ Autoencoder + variational inference

▪ Probabilistic interpretation of the latent space

▪ learned latent space well-behaved and structured

x x~

zµz z

S

L2(X,X)
~

KL(N(µz,∑z),N(0,I))

Kingma, 2016

Kingma & Welling, 2014

https://pure.uva.nl/ws/files/17891313/Thesis.pdf
https://arxiv.org/abs/1312.6114v10
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Variational autoencoder

▪ Reparametrisation trick

▪ to deal with nondifferentiable sampling function

▪ enables backpropagation

Kingma & Welling, 2014

x x~

zµzσz

S

ε~N(0,1)

z=µ+σε

https://arxiv.org/abs/1312.6114v10
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Variational autoencoder

▪ Generating distribution in the output space as well

▪ Sampling

▪ in the latent space

▪ in the output space

x x~

zµz z

S

µx x

S
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Variational autoencoder

▪ Generating new samples:

▪ Randomly sampling z

▪ Modifying z

▪ Smooth changes of the
generated image when moving
sligtly in the latent space

x~

zµz z

S

Kingma & Welling, 2014

https://arxiv.org/abs/1312.6114v10
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VAE examples

▪ Faces generated by
the model trained on 
Labeled Faces in the 
Wild (LFW) dataset

▪ Digits using MNIST 
dataset

Kingma, 2016

https://pure.uva.nl/ws/files/17891313/Thesis.pdf
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Variational Autoencoder: Generating images

Kingma & Welling, 2014

http://dpkingma.com/sgvb_mnist_demo/demo.html

https://arxiv.org/abs/1312.6114v10
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Sampling VAE latent space

White, 2016

https://arxiv.org/abs/1609.04468
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Variational autoencoders in music

▪ A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music

▪ VAE on sequential data

▪ Recurrent encoder and decoder

Roberts et al., 2019

https://magenta.tensorflow.org/music-vae

https://arxiv.org/abs/1803.05428
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VAE recap

▪ Generative model for unsupervised learning and dimensionality reduction.

▪ Combines autoencoder with variational inference.

▪ Learns compressed representation in a lower-dimensional latent space.

▪ Encoder maps input data to the latent space, modeling a distribution.

▪ Decoder reconstructs input data from latent space samples.

▪ Introduces probabilistic interpretation for flexible generation.

▪ Training objectives: 

▪ reconstruction loss

▪ KL divergence.

▪ Reparameterization trick enables 
backpropagation.

▪ Applications: data compression, 
anomaly detection, 
generating new samples.

▪ Widely used in deep learning research.
x x~

zµz z

S
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Generative Adversarial Networks

▪ No explicit probability modelling

▪ Minimax game:

▪ Generator generates syntetic images

▪ input: random noise

▪ tries to fool the discriminator

▪ Discriminator classifies wheter an
image is real or fake

▪ tries to catch the generator‘s fakes

▪ it is fed with generated and real 
samples

Goodfellow et al., 2014
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https://arxiv.org/abs/1406.2661
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GAN loss function

generator loss

discriminator loss
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GAN training algorithm
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Generating synthetic samples

▪ Keep the generator only

▪ Randomly sample z

▪ Linear interpolation in the latent space:
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Generating synthetic samples

Goodfellow et al., 2014

https://arxiv.org/abs/1406.2661
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DCGAN

▪ Unsupervised
representation
learning

▪ Deep Convolutional 
Generative 
Adversarial Networks

Radford et al., 2016

https://arxiv.org/abs/1511.06434v2
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DCGAN – generated examples
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DCGAN – interplolating in the latent space
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DCGAN – vector arithmetic

Radford et al., 2016

https://arxiv.org/abs/1511.06434v2
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LSGAN

▪ Least Squares Generative Adversarial Networks

▪ Higher quality images and more stable training
Mao et al., 2016

https://arxiv.org/abs/1611.04076v3
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Wasserstain GAN

▪ Wasserstain distance more suitable than Jensen-Shannon divergence (GAN):

▪ More stable

▪ The critic estimates the Wasserstain distance between distributions of fake and real data

▪ The generator minimizes the Wasserstain distance between the dist. of fake and real data

Arjovsky et al., 2017

https://arxiv.org/abs/1701.07875v3
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Improved Wasserstain GAN

▪ Avoid weight clipping in WGAN

▪ penalize the norm of gradient of the critic with respect to its input

▪ GAN:

▪ WGAN:

▪ New objective:  

Gulrajani et al., 2017

https://arxiv.org/abs/1704.00028v3
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Progressive GAN

▪ Progressive growing of GANs for improved quality, stability, and variation

▪ Grow generator and discriminator progressively, adding new layers

▪ Speeds up and stabilizes learning, produces hi-res images

Karras et al., 2018

https://arxiv.org/abs/1710.10196v3
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Progressive GAN

https://www.youtube.com/watch?v=G06dEcZ-QTg
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Pix2pix cGAN

▪ Image-to-Image Translation with Conditional Adversarial Networks

▪ Map the image to another image by aiming at different goals

▪ Conditional GAN – GAN conditioned on the additional input data

Isola et al., 2017

https://arxiv.org/abs/1611.07004
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Pix2pix cGAN
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Pix2pix cGAN



Deep Learning – Generative models 52

CycleGAN

▪ Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Zhu et al., 2017

https://arxiv.org/abs/1703.10593v7
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CycleGAN

▪ Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

▪ Cycle consistency loss: forward and backward consistency loss

Zhu et al., 2017

https://arxiv.org/abs/1703.10593v7
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CycleGAN
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BigGAN

▪ Large scale GAN training for high fidelity natural image synthesis

▪ Scaling up models

▪ Improving class-conditional GANs

▪ Trained on ImageNet

Brock et al., 2019

https://arxiv.org/abs/1809.11096v2
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BigGAN
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SinGAN

▪ Learning a Generative Model from a Single Natural Image

Shaham et al., 2019

https://arxiv.org/abs/1905.01164v2
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SinGAN
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StyleGAN

▪ A Style-Based Generator Architecture for Generative Adversarial Networks

▪ Analyzing and Improving the Image Quality of StyleGAN

▪ Alias-Free Generative Adversarial Networks

Karras et al., 2018 Karras et al., 2019 Karras et al., 2021

https://arxiv.org/abs/1812.04948v3
https://arxiv.org/abs/1912.04958v2
https://arxiv.org/abs/2106.12423v4
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StyleGAN https://this{person,cat,artwork}doesnotexist.com/
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f-AnoGAN

▪ Fast Unsupervised Anomaly Detection with Generative Adversarial Networks

Schiegl et al., 2019

https://www.researchgate.net/publication/330796048_f-AnoGAN_Fast_Unsupervised_Anomaly_Detection_with_Generative_Adversarial_Networks#fullTextFileContent
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GANomaly

▪ Semi-Supervised Anomaly Detection via Adversarial Training

Akcay et al., 2018

https://arxiv.org/abs/1805.06725v3
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C-VTON

▪ Context-Driven Image-Based Virtual Try-On Network

▪ geometric matching procedure that aligns the target clothing with the person‘s pose

▪ Image generator that utilizes contextual information to synthesize the final try-on result

Fele et al., 2022

https://lmi.fe.uni-lj.si/wp-content/uploads/2021/10/WACV2022_Benjamin-5_compressed.pdf
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GAN recap

▪ GANs are a type of generative model in machine learning.

▪ Consist of two components: a generator and a discriminator.

▪ Generator generates synthetic data samples from random noise.

▪ Discriminator learns to distinguish between real and generated data.

▪ The generator and discriminator are trained simultaneously in a competitive 
setting.

▪ The objective is to optimize both networks 
to improve the quality of generated samples.

▪ GANs can generate realistic data samples 
that resemble the training data.

▪ They are widely used for image synthesis, 
such as generating photorealistic images.

▪ GANs have applications in various domains, 
including computer vision and creative AI.

▪ GANs have challenges such as training 
instability and mode collapse.
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Normalizing flows

▪ Main idea: find an invertible function that transforms a complex data distribution 
to a latent Gaussian distribution

=> sample using the inverse of the obtained function!

Dinh et al., 2017

https://arxiv.org/abs/1605.08803v3
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Normalizing flows - math

▪ Bijective function:

▪ Change of variable formula:

▪ Coupling 
layers:

▪ Jacobian:

▪ Determinant:

▪ Inverse: Dinh et al., 2017

https://arxiv.org/abs/1605.08803v3
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Normalizing flows - math

▪ Partitioning:

▪ Combining coupling layers:

▪ Multi-scale 
architecture:

Dinh et al., 2017

https://arxiv.org/abs/1605.08803v3
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Real NVP

▪ Density estimation using 
Real NVP

▪ Real valued on-volume 
preserving transformations

▪ Stably invertible

▪ Learnable transformations

▪ Exact log-likelihood 
computation

▪ Exact sampling

▪ Efficient sampling

▪ Exact inference

▪ Efficient inference

▪ Interpretable latent space

Dinh et al., 2017

https://arxiv.org/abs/1605.08803v3
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Flow++

▪ Improving Flow-Based Generative Models with Variational Dequantization and 
Architecture Design

▪ variational flow-based dequantization instead of uniform dequantization

▪ logistic mixture CDF coupling flows

▪ self-attention in the conditioning networks
of coupling layers

Ho et al., 2019

https://arxiv.org/abs/1902.00275v2
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Flow++ results

Ho et al., 2019

https://arxiv.org/abs/1902.00275v2
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Glow

▪ Generative Flow with Invertible 1×1 Convolutions

▪ Efficient realistic-looking synthesis and manipulation of large images with the 
plain log-likelihood objective

Kingma & Dhariwal, 2018

https://arxiv.org/abs/1807.03039v2
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Glow results
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Glow results

https://openai.com/blog/glow/

https://openai.com/blog/glow/
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Glow results

https://openai.com/blog/glow/

https://openai.com/blog/glow/
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DifferNet

▪ Same Same But DifferNet: Semi-Supervised
Defect Detection with Normalizing Flows

Rudolph et al., 2020

https://arxiv.org/abs/2008.12577v1
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DifferNet results
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DifferNet results
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FastFlow

▪ Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows

Yu et al., 2021

https://arxiv.org/abs/2111.07677v2
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FastFlow results
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AD on MVTech AD benchmark leaderboard

https://paperswithcode.com/sota/anomaly-detection-on-mvtec-ad
14 May 2022

https://paperswithcode.com/sota/anomaly-detection-on-mvtec-ad
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Normalising flows recap

▪ Normalizing flows transform a simple base distribution into a complex target 
distribution through invertible transformations.

▪ Density Estimation: Normalizing flows excel at modeling complex probability 
distributions and density estimation tasks.

▪ Change of Variables: They leverage the change of variables formula to compute 
the probability density function of the target distribution.

▪ Flexibility and Expressiveness: Normalizing flows can model multimodal 
distributions and varying correlation structures.

▪ Sampling and Generation: Efficient sampling from the target distribution is 
achieved by applying inverse transformations to samples from the base 
distribution.

▪ Inference and Latent Space Manipulation: They can perform inference tasks and 
allow meaningful manipulation of latent variables.

▪ Training and Optimization: Normalizing flows are trained by maximizing the 
likelihood of observed data through optimization techniques.
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PixelCNN

▪ Conditional Image Generation with PixelCNN Decoders

▪ Autoregressive model

▪ Sequential pixel generation

Van der Oord et al., 2016

https://arxiv.org/abs/1606.05328v2
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VQ-VAE

▪ Neural Discrete Representation Learning

▪ Discrete latent space – embeddings

▪ Vector quantisation

Van der Oord et al., 2017

https://arxiv.org/abs/1711.00937v2
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VQ-VAE results

ImageNet 128x128x3 images VQ-VAE 32x32x1latent space, K=512
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VQ-VAE audio

Voice Style-TransferVoice Reconstruction

Samples from prior: https://avdnoord.github.io/homepage/vqvae/

https://avdnoord.github.io/homepage/vqvae/
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VQ-VAE2

▪ Generating Diverse High-Fidelity Images with VQ-VAE-2

Razavi et al., 2019

https://arxiv.org/abs/1906.00446v1
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VQ-VAE2 results
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CLIP

▪ Learning Transferable Visual Models From Natural Language Supervision

▪ CLIP - Contrastive Language-Image Pre-Training

▪ Pre-training task of predicting which caption goes with which image

▪ 400 M (image, text) pairs

Radford et al., 2021

https://arxiv.org/abs/2103.00020v1
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CLIP results

▪ Zero shot transfer
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DALL·E

▪ Zero-Shot Text-to-Image Generation

▪ Learning joint distribution over images and captions

https://openai.com/blog/dall-e/

Ramesh et al., 2021

https://openai.com/blog/dall-e/
https://arxiv.org/abs/2102.12092v2


Deep Learning – Generative models 91

DALL·E mini results https://huggingface.co/spaces/dalle-mini/dalle-mini

https://huggingface.co/spaces/dalle-mini/dalle-mini
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Diffusion models

▪ Denoising Diffusion Probabilistic Models
Ho et al., 2020

https://arxiv.org/abs/2006.11239v2
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Denoising Diffusion Probabilistic Models

▪ Forward process

▪ =diffusion process

▪ from image to noise

▪ gradually add Gausian noise

▪ create xt from xt-1 (or from x0)

▪ Reverse process

▪ from noise to image

▪ train network to estimate noise

▪ inference reconstructs xt-1 from xt
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DDPM

▪ Improved Denoising Diffusion Probabilistic Models Nichol et al., 2021

https://arxiv.org/abs/2102.09672v1
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DDPM

▪ Diffusion Models Beat GANs on Image Synthesis Dhariwal et al., 2021

https://arxiv.org/abs/2105.05233v4
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Stable Diffusion

▪ Latent Diffusion: Sequential application of denoising autoencoders in the latent space

▪ Cross-attention layers for conditioning inputs

▪ Stable Diffusion = (modified) Latent Diffusion

+ https://stability.ai/ – Cluster ~4000 A100 GPUs, well financed startup doing open source

+ https://laion.ai/blog/laion-5b/ – Open data scraping project

Rombach et al., 2022

https://stability.ai/
https://laion.ai/blog/laion-5b/
https://arxiv.org/abs/2112.10752v2
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Stable Diffusion

bear wearing sunglasses riding a 

rocket into outer space, digital art, 

trending on artstation, 4k, hd

Teddy bears swimming at the 

olympics 400m butterfly event

[https://github.com/huggingface/diffusers]
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Stable Diffusion

A matte painting of a viking in a princess dress riding a dragon, digital art, hd, 4k, trending 

on artstation
A matte painting of a viking in a princess dress riding a dragon, vivid color scheme, 

cyberpunk, digital art, hd, 4k, trending on artstation

A matte painting of a viking in a princess dress riding a robot dragon, robotics, futuristic, city in 

background, neon lights, vivid color scheme, cyberpunk, digital art, hd, 4k, trending on artstation

[https://github.com/huggingface/diffusers]
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Stable Diffusion

A renaissance painting of a man screaming at a computer, digital art, renaissance, hd, 4k, 

trending on artstation

[https://github.com/huggingface/diffusers]
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Stable Diffusion inpainting

Prompt: Cat wearing a funny hat
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Fine-tunning Stable Diffusion

▪ Fine tune Diffusion models with only a 

small number of additional examples

▪ Finetune with “photo of vitjan” as a 

prompt.

Ruiz et al., 2022

https://arxiv.org/abs/2208.12242v1
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Text-to-video

Make-a-video

A golden retriever eating ice 

cream on a beautiful tropical 

beach at sunset, high 

resolution

A teddy bear painting a portrait Cat watching TV with a remote 

in hand

Singer et al., 2022

https://arxiv.org/abs/2209.14792
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Text-to-3D

DreamFusion: Text-to-3D using 2D Diffusion

https://dreamfusion3d.github.io/ Poole et al., 2022

https://dreamfusion3d.github.io/
https://arxiv.org/abs/2209.14988
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GLIDE

▪ Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models

Nichol et al., 2022

https://arxiv.org/abs/2112.10741v3
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DALL-E 2

▪ Hierarchical Text-Conditional Image Generation with CLIP Latents

▪ prior generates a CLIP image embedding given a text caption

▪ decoder generates an image conditioned on the image embedding

Ramesh et al., 2022

https://arxiv.org/abs/2204.06125v1
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DALL-E 2

https://openai.com/product/dall-e-2
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ControlNet

▪ Controlling large 
pretrained diff. models

▪ Learns task-specific
conditions en-to-end

▪ Augments a pretrained
model

▪ ControlNet on top 
of StableDiffusion:

Zhang et al., 2023

https://arxiv.org/abs/2302.05543
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ControlNet

▪ Image
generation
controlled
by edges
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ControlNet

▪ Image
generation
controlled
by lines
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ControlNet

▪ Image
generation
controlled
by human 
scribbles
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ControlNet

▪ Image
generation
controlled
by human 
keypoints
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Midjourney

https://www.midjourney.com/
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https://www.midjourney.com/
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https://www.midjourney.com/
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Diffusion models recap

▪ Diffusion models are generative models that capture the process of diffusion, or 
how probability distributions evolve over time.

▪ They provide a framework for modeling complex distributions and generating 
high-quality samples.

▪ Key concept: Diffusion process, where a sample is gradually transformed by 
adding noise in a controlled manner.

▪ Samples are iteratively updated over multiple steps to approximate the target 
distribution.

▪ Diffusion models can be used for tasks such as image generation, inpainting, and 
denoising.

▪ They offer advantages like capturing long-range dependencies and handling 
multimodal distributions.

▪ Training diffusion models typically involves maximizing the likelihood of observed 
data through gradient-based optimization.

▪ Inference with diffusion models involves reversing the diffusion process to obtain 
the initial sample or perform tasks like inpainting.
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Generative models recap

▪ GMM
▪ Simple, work well on low-dimensional data
▪ Problems on high-dimensional data, difficult to increase the model capacity

▪ PCA
▪ Simple, fast, robust, enables reconstruction
▪ Linear, limited capacity

▪ AE
▪ Simple setup, enables reconstruction, self-supervised learning for model pretraining
▪ Latent space not nice, not smooth, does not enable useful sampling 

▪ VAE
▪ Principled approach, allows inference of q(z|x), nice latent space, useful representations
▪ Maximising lower bound, not exact, samples tend to be blurrier and lower quality vs. GAN

▪ GAN
▪ Game theoretic approach, great quality
▪ No explicit probability modelling, no inference queries, more unstable to train

▪ NF
▪ Exact log-likelihood computation, exact and efficient sampling and inference
▪ Samples tend to be lower quality than the results of GAN

▪ Diffusion models
▪ Modelling complex distributions, capturing long-range dependencies, SOTA performance
▪ Computational complexity
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