Deep Learning

Transformers in computer vision

Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science

Academic year: 2022/23

Transformers in computer vision

Transformers in Vision: A Survey

Peer-reviewed Publications Vs. Years

Ø Peer-reviewed publications in CVPR, ICCV, ECCV, NeurIPS, ICML and ICLR

Arxiv Publications Vs. Years

Publications on Arxiv (including both Peerreviewed and Non peer-reviewed)

Key Terms % Split over Years

Benchmark leader-boards

Image Classification on Imagel Image Generation		Semantic Segmentation		
Object Detection 1319 papers with code • 35 benchmarks • 132 datasets Object detection is the task of detecting instances of objects art methods can be categorized into two main types: one- methods prioritize inference speed, and example models incl prioritize detection accuracy, and example models include Fas The most popular benchmark is the MSCOCO dataset. Mo Average Precision metric.	588 papers with code \cdot 54 benchmarks \cdot 37 datasets Image generation (synthesis) is the task of generating new image generation (synthesis) is the task of generating samples of \cdot Conditional generation refers to generating samples of \cdot Conditional image generation (subtask) refers to generating a label, i.e. $p(y x)$. In this section, you can find state-of-the-art leaderboar generation, and other types of image generations, refer to the (Image credit: StyleGAN)	1747 papers with code • 44 benchmarks • 177 datasets Semantic segmentation, or image segmentation, is the task of to the same object class. It is a form of pixel-level prediction b to a category. Some example benchmarks for this task are C usually evaluated with the Mean Intersection-Over-Union (Me (Image credit: CSAILVision) Benchmarks	 Panoptic Segmentation 49 papers with code • 10 benchmarks • 8 datasets Panoptic segmentation unifies the typically distinct tasks of semantic segmentation (a pixel) and instance segmentation (detect and segment each object instance). (Image credit: Detectron2) 	
(Image credit: Detectron)	Benchmarks	Trend Dataset Best Model Cityscapes test Cityscapes test HRNet-OCR (Hierar Hierarchical Multi-5	Benchmarks	
	Trend Dataset Best Model	PASCAL VOC 2012 test EfficientNet-L2+NA	Trend Dataset Best Model	
Benchmarks	CIFAR-10 NCSN++ cont. (de	PASCAL Context CAA + Simple decod	COCO test-dev BEFINE (ResNeXt-101-DCN) B REFINE: Prediction Fusion Network for Panoptic	
Trend Dataset Best Mod	ImageNet 32x32	Cityscapes val	Cityscapes val Cityscapes val Cityscapes val	
COCO test-dev Swin-L (H D Swin Tr	LSUN Bedroom 256 x 256 ADM (dropout)	ADE20K val Swin-L (UperNet, Im O Swin Transformer: t	COCO panoptic MaX-DeepLab-L (single-scale) MaX-DeepLab: End-to-End Panoptic Segmentatio	
COCO minival Swin-L (H	ImageNet 64x64 Befficient Content	ADE20K Swin-L (UperNet, Im	Mapillary val Axial-DeepLab-L (multi-scale) Axial-DeepLab: Stand-Alone Axial-Attention for P. Axial-DeepLab: Stand-Alone Axial-Attention for P.	
PASCAL VOC 2007 Cascade Simple Sharpness-Aware Minimization for Efficiently Improving Generalization	FFHQ StyleGAN2 D Analyzing and Im CelebA 256x256 SPN Menick and H D Generating High	PASCAL VOC 2012 val EfficientNet-L2+NAS © Rethinking Pre-train S3DIS Point Transformer © Point Transformer	S-FPN (single scale test, with self-training) ing and Self-training 15 May 2021	
 ViT-H/14 An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale 	STL-10 TransGAN	i ransformers Can Make One Strong GAN		

Image Classification on ImageNet

Leade	rboard	d Dataset		Image	e Generatio	n								
	(Obiect D	etection	890 papers wi	ith code • 72 benchmarks •	Sem	antic Segn	nent	ation					
10	0 2	2056 papers with code	• 60 benchmarks • 188	Image genera	tion (synthesis) is the task o	2714 paper	rs with code • 74 benchr	Pano	optic Segm	nentation	I			
ACCURACY	0	Object detection is the	e task of detecting insta	Uncondi Conditio on a labe	tional generation refers to v_1 nal image generation (subt. 1, i.e. $p(y x)$.	Semantic s to the san	segmentation, or image s me object class. It is a 1 to a category. Some ora	84 papers	with code • 10 benchmar	ks • 14 datasets	of computer componentian (acc	ian e close k	abol to	coch
TOP 1	0 I	methods prioritize infe	erence speed, and exam	In this section	on, you can find state-of-	Models are	e usually evaluated with	pixel) and i	instance segmentation (de	etect and segment eac	h object instance).	gn a class la	iber to	each
4	0 · 1	The most popular ber	nchmark is the MSCOC	generation, a	nd other types of image gen	(Image cre	edit: CSAILVision)	(Image cre	edit: Detectron2)					
	,	Average Precision met	ric.	(image credit	. Styledning	Bench	marks	Bench	marks				٢	Add a Result
Filter: PatchC	lma onvr	(Image credit: Detectr	ron)	Benchma	arks	These lead	lerboards are used to tra	These lead	derboards are used to trac	ck progress in Panopti	ic Segmentation			
Rank I	/lod	Benchmarks		These leader	poards are used to track pre	Trend	Dataset	Trend	Dataset	Best Model		Paper	Code	Compare
		These leaderboards ar	e used to track progres	Trend	Dataset	-	Cityscapes test	\sim	COCO test-dev	🟆 Mask2Former (Swir	n-L)		0	See all
1	Mo (Vi [™]	Trend Dataset	Best M		CIFAR-10	<u></u>	ADE20K		Cityscapes val	T Panoptic-DeepLab (Vistas, multi-scale)	(SWideRNet-(1, 1, 4.5), Mapillary			See all
2	Co/	COCO test-	dev 🦞 Dil	1	ImageNet 64x64	ہے۔	ADE20K val		COCO minival	T Mask2Former (sing	le-scale)	6	o	See all
3	ViT	COCO mini	val 🦞 Dil		ImageNet 32x32		NYU Depth v2		Mapillary val	🏆 Panoptic FCN* (Swi	n-L, single-scale)		0	See all
		PASCAL VC	C 2007	:	STL-10	6	PASCAL VOC 2012 test	~	Cityscapes test	🏆 Panoptic-DeepLab ((SWideRNet-(1, 1, 4.5))	6		See all
4	Co/	au an ao an an	Single		FFHQ 256 x 256		Cityscapes val	THRNetV2	2-OCR+PSA		C See all		5	Mav
5	DaViT	-G	90.4% 1437M		LSUN Bedroom 256 x 256		PASCAL Context	T CAA + CA	AR (ConvNeXt-Large + JPU)		C See all		21)22
6	Meta F (Efficie	Pseudo Labels entNet-L2)	90.2% 98.8% 480M		FFHQ	T :	StyleGAN-XL		See all					4

Transformers architecture

Deep Learning – Transformers in computer vision

Image Transformer

- Image generation as an autoregressive sequence generation problem
- Encoder-decoder architecture
- Self-attention restricted to local neighbourhoods
- Still large receptive field
- Image generation and super-resolution

Deep Learning – Transformers in computer vision

Image Transformer results

VIT - Vision Transformer $\mathbf{z}_0 = [\mathbf{x}_{class}; \mathbf{x}_p^1 \mathbf{E}; \mathbf{x}_p^2 \mathbf{E}; \cdots; \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{pos}$ $\mathbf{z}'_{\ell} = MSA(LN(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1},$ $\mathbf{z}_{\ell} = MLP(LN(\mathbf{z}'_{\ell})) + \mathbf{z}'_{\ell},$

Dosovitskiy et al., 2020

TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE $\mathbf{y} = \text{LN}(\mathbf{z}_L^0)$

Model	Layers	Hidden size <i>L</i>	MLP size	Heads	Params	Deng	<u>et al., 2009</u>
ViT-Base ViT-Large	12 24	768 1024	3072 4096	12 16	86M 307M	Ridnik	<u>k et al., 2021</u>
ViT-Huge	32	1280	5120	16	632M	Sun e	<u>t al., 2017</u>
		Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I2 (ViT-L/	1K 16) (Resl	BiT-L Net152x4)	Noisy Student (EfficientNet-L2)
ImageNet ImageNet R CIFAR-10 CIFAR-100 Oxford-IIIT Oxford Flow VTAB (19 ta	eaL Pets vers-102 asks)	$\begin{array}{c} 88.55 \pm 0.04 \\ 90.72 \pm 0.05 \\ 99.50 \pm 0.06 \\ 94.55 \pm 0.04 \\ 97.56 \pm 0.03 \\ 99.68 \pm 0.02 \\ 77.63 \pm 0.23 \end{array}$	$\begin{array}{c} 87.76 \pm 0.03 \\ 90.54 \pm 0.03 \\ 99.42 \pm 0.03 \\ 93.90 \pm 0.05 \\ 97.32 \pm 0.11 \\ \textbf{99.74} \pm 0.00 \\ 76.28 \pm 0.46 \end{array}$	85.30 ± 0 88.62 ± 0 99.15 ± 0 93.25 ± 0 94.67 ± 0 99.61 ± 0 72.72 ± 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$54 \pm 0.02 \\90.54 \\37 \pm 0.06 \\51 \pm 0.08 \\62 \pm 0.23 \\63 \pm 0.03 \\29 \pm 1.70$	88.4/88.5* 90.55 — — — — — —
TPUv3-core	-days	2.5k	0.68k	0.23k	K	9.9k	12.3k

ViT performance

ViT details

- Initial linear embedding of RGB values
- Similarity of position embeddings
- Attention distance

Pos. Emb.	Default/Stem	Every Layer	Every Layer-Shared
No Pos. Emb.	0.61382	N/A	N/A
1-D Pos. Emb.	0.64206	0.63964	0.64292
2-D Pos. Emb.	0.64001	0.64046	0.64022
Rel. Pos. Emb.	0.64032	N/A	N/A

RGB embedding filters (first 28 principal components)

Attention maps

Input

Attention

Deep Learning – Transformers in computer vision

DeiT

tokens

token

 $\mathcal{L}_{ ext{teacher}}$

DeiT - Training data-efficient image transformers $\mathcal{L}_{\mathrm{CE}}$ & distillation through attention Soft and hard-label distillation Student-teacher architecture CNN or Transformer-based teacher Distillation token to reproduce the label predicted by the teacher Fine-tuning with distillation Classification with joint classifiers Trained on a single 8-GPU node in 2-3 days Imagenet as the sole training set FFN Data and compute efficient! self-attention $\mathcal{L}_{\text{global}} = (1 - \lambda) \mathcal{L}_{\text{CE}}(\psi(Z_{\text{s}}), y) + \lambda \tau^2 \text{KL}(\psi(Z_{\text{s}}/\tau), \psi(Z_{\text{t}}/\tau))$ $\mathcal{L}_{\text{global}}^{\text{hardDistill}} = \frac{1}{2} \mathcal{L}_{\text{CE}}(\psi(Z_s), y) + \frac{1}{2} \mathcal{L}_{\text{CE}}(\psi(Z_s), y_{\text{t}})$ patch class

 $\left[O \right]$

distillation

token

DeiT ablation study

	Supe	ervision	ImageNet top-1 (%)				
method ↓	label	teacher	Ti 224	S 224	B 224	B†384	
DeiT– no distillation	✓	×	72.2	79.8	81.8	83.1	
DeiT– usual distillation	×	soft	72.2	79.8	81.8	83.2	
DeiT– hard distillation	×	hard	74.3	80.9	83.0	84.0	
DeiT: class embedding	555	hard	73.9	80.9	83.0	84.2	
DeiT: distil. embedding		hard	74.6	81.1	83.1	84.4	
DeiT: class+distillation		hard	74.5	81.2	83.4	84.5	

	groundtruth	no distil convnet	lation DeiT	DeiT ? class	student (of the distillation	e convnet) DeiT ^
groundtruth	0.000	0.171	0.182	0.170	0.169	0.166
convnet (RegNetY)	0.171	0.000	0.133	0.112	0.100	0.102
DeiT	0.182	0.133	0.000	0.109	0.110	0.107
DeiT [®] class only	0.170	0.112	0.109	0.000	0.050	0.033
DeiT [®] distil. only	0.169	0.100	0.110	0.050	0.000	0.019
DeiT [®] class+distil.	0.166	0.102	0.107	0.033	0.019	0.000

Teacher	acc.	Student: Ľ	DeiT-B ^
Models		pretrain	↑384
DeiT-B	81.8	81.9	83.1
RegNetY-4GF	80.0	82.7	83.6
RegNetY-8GF	81.7	82.7	83.8
RegNetY-12GF	82.4	83.1	84.1
RegNetY-16GF	82.9	83.1	84.2

Model	ViT model	embedding dimension	#heads	#layers	#params
DeiT-Ti	N/A	192	3	12	5M
DeiT-S	N/A	384	6	12	22M
DeiT-B	ViT-B	768	12	12	86M

Model	ImageNet	CIFAR-10	CIFAR-100	Flowers	Cars	iNat-18	iNat-19	im/sec
Grafit ResNet-50 [49]	79.6	_	_	98.2	92.5	69.8	75.9	1226.1
Grafit RegNetY-8GF [49]	_	_	_	99.0	94.0	76.8	80.0	591.6
ResNet-152 [10]	_	_	_	_	_	69.1	_	526.3
EfficientNet-B7 [48]	84.3	98.9	91.7	98.8	94.7	-	-	55.1
ViT-B/32 [15]	73.4	97.8	86.3	85.4	_	_	_	394.5
ViT-B/16 [15]	77.9	98.1	87.1	89.5	_	_	_	85.9
ViT-L/32 [15]	71.2	97.9	87.1	86.4	_	_	_	124.1
ViT-L/16 [15]	76.5	97.9	86.4	89.7	-	-	-	27.3
DeiT-B	81.8	99.1	90.8	98.4	92.1	73.2	77.7	292.3
DeiT-B↑384	83.1	99.1	90.8	98.5	93.3	79.5	81.4	85.9
DeiT-B [®]	83.4	99.1	91.3	98.8	92.9	73.7	78.4	290.9
DeiT-B [•] ↑384	84.4	99.2	91.4	98.9	93.9	80.1	83.0	85.9

MViT - Multiscale Vision Transformers

- Several channel-resolution 'scale' stages
- From image resolution and small channel dimension to reduced resolution and expanded channel capacity
- Pooling attention

ViT

stage	operators	output sizes
data	stride $8 \times 1 \times 1$	8×224×224
patch ₁	$1 \times 16 \times 16,768$ stride $1 \times 16 \times 16$	$768 \times 8 \times 14 \times 14$
scale ₂	$\begin{bmatrix} MHA(768) \\ MLP(3072) \end{bmatrix} \times 12$	$768 \times 8 \times 14 \times 14$

179.6G FLOPS 87.2M param 68.5% top1 acc.

stage	operators	output sizes	
data	stride $4 \times 1 \times$	1	$16 \times 224 \times 224$
cube ₁	$3 \times 7 \times 7,96$ stride $2 \times 4 \times 4$	$96 \times 8 \times 56 \times 56$	
$scale_2$	MHPA(96) MLP(384)	$\times 1$	$96 \times 8 \times 56 \times 56$
scale ₃	MHPA(192) MLP(768)	$\times 2$	$192 \times 8 \times 28 \times 28$
scale ₄	MHPA(384) MLP(1536)	×11	$384 \times 8 \times 14 \times 14$
scale ₅	MHPA(768) MLP(3072)	$\times 2$	768×8×7×7

MViT

70.5G FLOPS 36.5M param 77.2% top1 acc.

MViT results

Video recognition on Kinetics-400

model	pre-train	top-1	top-5	FLOPs×views	Param
Two-Stream I3D [11]	-	71.6	90.0	$216 \times NA$	25.0
ip-CSN-152 [96]	-	77.8	92.8	$109 \times 3 \times 10$	32.8
SlowFast 8×8+NL [30]	-	78.7	93.5	$116 \times 3 \times 10$	59.9
SlowFast 16×8 +NL [30]	-	79.8	93.9	$234 \times 3 \times 10$	59.9
X3D-M [29]	-	76.0	92.3	$6.2 \times 3 \times 10$	3.8
X3D-XL [29]	-	79.1	93.9	$48.4 \times 3 \times 10$	11.0
ViT-B-VTN [78]	ImageNet-1K	75.6	92.4	4218×1×1	114.0
ViT-B-VTN [78]	ImageNet-21K	78.6	93.7	$4218 \times 1 \times 1$	114.0
ViT-B-TimeSformer [6]	ImageNet-21K	80.7	94.7	$2380 \times 3 \times 1$	121.4
ViT-L-ViViT [1]	ImageNet-21K	81.3	94.7	3992×3×4	310.8
ViT-B (our baseline)	ImageNet-21K	79.3	93.9	$180 \times 1 \times 5$	87.2
ViT-B (our baseline)	-	68.5	86.9	$180 \times 1 \times 5$	87.2
MViT-S	-	76.0	92.1	32.9×1×5	26.1
MViT -B, 16×4	-	78.4	93.5	$70.5 \times 1 \times 5$	36.6
MViT- B, 32×3	-	80.2	94.4	$170 \times 1 \times 5$	36.6
MViT- B, 64×3	-	81.2	95.1	$455 \times 3 \times 3$	36.6

Image recognition on ImageNet

model	Acc	FLOPs (G)	Param (M)
RegNetZ-4GF [24]	83.1	4.0	28.1
RegNetZ-16GF [24]	84.1	15.9	95.3
EfficientNet-B7 [93]	84.3	37.0	66.0
DeiT-S [95]	79.8	4.6	22.1
DeiT-B [95]	81.8	17.6	86.6
DeiT-B \uparrow 384 ² [95]	83.1	55.5	87.0
MViT-B-16, max-pool	82.5	7.8	37.0
MViT-B-24, max-pool	83.1	10.9	53.5
MViT-B-24-wide-320 ² , max-pool	84.3	32.7	72.9
MViT -B-16	83.0	7.8	37.0
MViT -B-24-wide-320 ²	84.8	32.7	72.9

Swin Transformer

- Hierarchical Vision Transformer using Shifted Windows
- General purpose transformer backbone
- Hierarchical feature maps
- Shift of the window partition between consecutive self-attention layers

Swin architecture

- Patch merging
- Regular and shifted window configuration in MSA

Swin results

(a) Regu	lar In	ageNet-	1K traiı	ned models	;	(b) ImageNet-22K pre-trained models					
method	image size	#param.	FLOPs	throughput (image / s)	ImageNet top-1 acc.	method	image size	#param	. FLOPs	throughput (image / s)	ImageNet top-1 acc.
RegNetY-4G [47]	224^{2}	21M	4.0G	1156.7	80.0	R-101x3 [37]	384^{2}	388M	204.6G	-	84.4
RegNetY-8G [47]	224^{2}	39M	8.0G	591.6	81.7	R-152x4 [37]	480^{2}	937M	840.5G	-	85.4
RegNetY-16G [47]	224^{2}	84M	16.0G	334.7	82.9	ViT-B/16 [19]	384^{2}	86M	55.4G	85.9	84.0
EffNet-B3 [57]	300^{2}	12M	1.8G	732.1	81.6	ViT-L/16 [19]	384^{2}	307M	190.7G	27.3	85.2
EffNet-B4 [57]	380^{2}	19M	4.2G	349.4	82.9	Swin-B	224^{2}	88M	15.4G	278.1	85.2
EffNet-B5 [57]	456 ²	30M	9.9G	169.1	83.6	Swin-B	384 ²	88M	47.0G	84.7	86.0
EffNet-B6 [57]	528^{2}	43M	19.0G	96.9	84.0	Swin-L	384 ²	197M	103.9G	42.1	86.4
EffNet-B7 [57]	600^{2}	66M	37.0G	55.1	84.3						
ViT-B/16 [19]	384^{2}	86M	55.4G	85.9	77.9						
ViT-L/16 [19]	384^{2}	307M	190.7G	27.3	76.5						
DeiT-S [60]	224^{2}	22 M	4.6G	940.4	79.8						
DeiT-B [60]	224^{2}	86M	17.5G	292.3	81.8						
DeiT-B [60]	384^{2}	86M	55.4G	85.9	83.1						
Swin-T	224^{2}	29M	4.5G	755.2	81.3						
Swin-S	224^{2}	50M	8.7G	436.9	83.0						
Swin-B	224^{2}	88M	15.4G	278.1	83.3						
Swin-B	384^{2}	88M	47.0G	84.7	84.2						

Swin results

			I			l				-							
(b)	Variou	is bao	ekbon	es w. Ca	ascade	Mask	R-CN	Ν			ADE	20K	val	test		EL OD-	EDC
	AP ^{box}	AP_{50}^{box}	AP ₇₅ ^{box}	AP ^{mask} A	AP_{50}^{mask}	AP ₇₅ ^{mask}	paramI	FLC	PsFPS		Method	Backbone	mIoU	score	#param.	FLOPS	FPS
DeiT-S [†]	48.0	67.2	51.7	41.4	64.2	44.3	80M	889	OG 10.4		DANet [22]	ResNet-101	45.2	-	69M	1119G	15.
R50	46.3	64.3	50.5	40.1	61.7	43.4	82M	739	OG 18.0)	DLab.v3+ [10]	ResNet-101	44.1	-	63M	1021G	16.
Swin-T	50.5	69.3	54.9	43.7	66.6	47.1	86M	745	5G 15.3		ACNet [23]	ResNet-101	45.9	38.5	-		
X101-32	48.1	66.5	52.4	41.6	63.9	45.2	101M	819	G 12.8	_	DNL [68]	ResNet-101	46.0	56.2	69M	1249G	14.
Swin-S	51.8	70.4	56.3	44.7	67.9	48.5	107M	838	3G 12.0)	OCRNet [70]	ResNet-101	45.3	56.0	56M	923G	19.
X101-64	48.3	66.4	52.3	41.7	64.0	45.1	140M	972	2G 10.4		UperNet [66]	ResNet-101	44.9	-	86M	1029G	20.
Swin-B	51.9	70.9	56.5	45.0	68.4	48. 7	145M	982	2G 11.6		OCRNet [70]	HRNet-w48	45.7	-	71M	664G	12.
		(c)	Syste	m-level	Comp	arison				•	DLab.v3+ [10]	ResNeSt-101	46.9	55.1	66M	1051G	11.
	r 41 - 1		mi	ni-val	tes	t-dev					DLab.v3+ [10]	ResNeSt-200	48.4	-	88M	1381G	8.1
N	lethod		AP ^{bo}	^x AP ^{mask}	AP ^{box}	AP ^{mas}	_{sk} #para	am.	FLOPS		SETR [78]	T-Large [‡]	50.3	61.7	308M	-	-
RepPoi	ntsV2*	[11]	-	-	52.1	-	-		-	-	UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.
GC	Net* [6	5]	51.8	44.7	52.3	45.4	-		1041G		UperNet	Swin-T	46.1	-	60M	945G	18.
Relation	Net++ [*]	* [12]] -	-	52.7	-	-		-		UperNet	Swin-S	49.3	-	81 M	1038G	15.
SpineN	et-190	[20]	52.6	-	52.8	-	164	М	1885G		UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
ResNeS	St-200*	[75]	52.5	-	53.3	47.1	-		-		UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2
Efficient	Det-D	7 [58]] 54.4		55.1	-	771	M	410G				1		l		
Detect	oRS* [[45]	-	-	55.7	48.5	-		-								
YOLO	v4 P7*	' [3]	-	-	55.8	-	-		-		Swin as	s a back	bone	e ar	chited	cture	1
Copy-	paste [25]	55.9	47.2	56.0	47.4	185	М	1440G			\cap object	- dat		on		
X101-6	4 (HTC	C++)	52.3	46.0	-	-	155	М	1033G	-	•	O object	. uei	ecu		_	
Swin-H	B (HTC	2++)	56.4	49.1	-	-	160	М	1043G	-	 ADE. 	20K sem	anti	ic se	egme	ntati	on
Swin-I	L (HTC	C++)	57.1	49.5	57.7	50.2	284	Μ	1470G						-		
Swin-L	(HTC-	++)*	58.0	50.4	58.7	51.1	284	Μ	-								

SwinV2

- Swin Transformer V2: Scaling Up Capacity and Resolution
- A res-post-norm to replace the previous pre-norm configuration
- A scaled cosine attention to replace the original dot product attention
- A log-spaced continuous relative position bias approach to replace the previous parameterized approach
- Self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images
- Several tricks for memory efficiency
- Up to 3B parameters
- Up to 1,536x1,536 image resolution

SwinV2 results

Method	naram	pre-train	pre-train	pre-train	pre-train	fine-tu	ne Imag	geNet-1K-V	71 II	maegN	Vet-11	K-V2
Wethou	param	images	length (#im)	im size	time	im siz	ze t	op-1 acc		top-1		c
SwinV1-B	88M	IN-22K-14M	1.3B	224^{2}	$< 30^{\dagger}$	3842	2	86.4		7	6.58	
SwinV1-L	197M	IN-22K-14M	1.3B	224^{2}	$< 10^{\dagger}$	3842	2	87.3		7	7.46	
ViT-G [80]	1.8B	JFT-3B	164B	224^{2}	>30k	518 ²	2	90.45		8	3.33	
V-MoE [56]	14.7B*	JFT-3B	-	224^{2}	16.8k	518 ²	2	90.35			-	
CoAtNet-7 [17]	2.44B	JFT-3B	-	224^{2}	20.1k	512^{2}	2	90.88			-	
SwinV2-B	88M	IN-22K-14M	1.3B	192^{2}	$< 30^{\dagger}$	3842	2	87.1		7	8.08	
SwinV2-L	197M	IN-22K-14M	1.3B	192^{2}	$<\!\!20^{\dagger}$	3842	2	87.7		7	8.31	
SwinV2-G	3.0B	IN-22K-ext-70M	3.5B	192^{2}	$< 0.5 k^{\dagger}$	640^{2}	2	90.17		8	4.00	
							train	test	mini_v	al (AP)	test_de	
Method	train I(W	V) size test I(W) si	ze mIoU		Meth	nod	I(W) size	I(W) size	box	mask	box	mask
SwinV1-L [46]	640((7) 640(7)	53.5*		CopyPas	ste [25]	$\frac{1}{1280(-)}$	1280(-)	57.0	48.9	57.3	49.1
Focal-L [75]	640(4	40) 640(40)	55.4*		SwinV1	-L [46]	800(7)	ms(7)	58.0	50.4	58.7	51.1
CSwin-L [21]	640(4	40) 640(40)	55.7*		YOLO	R [66]	1280(-)	1280(-)	-	-	57.3	-
MaskFormer [13]	640((7) 640(7)	55.6*		CBNet	t [43]	1400(7)	ms(7)	59.6	51.8	60.1	52.3
FaPN [33]	640((7) 640(7)	56.7*		DyHea	d [16]	1200(-)	ms(-)	60.3	-	60.6	-
BEiT [4]	640(4	40) 640(40)	58.4*		SoftTeach	er [74]	1280(12)	ms(12)	60.7	52.5	61.3	53.0
SwinV2-L	6400	40) 640(40)	55.0*		Swint	/2 I		1100(32)	58.8	51.1	-	-
(UperNet)	040(-	+0) 040(40)	55.9			v 2-L 'тт)	1536(32)	1100 (48)	58.9	51.2	-	-
SwinV2 G		640(40)	59.1		(1110	~ ' ' /		ms (48)	60.2	52.1	60.8	52.7
(Un an Nat)	640(4	40) 896 (56)	59.3		Swint	2 C		1100(32)	61.7	53.3	-	-

SwinV2-G

(HTC++)

1536(32) 1100 (48) 61.9 53.4

-

ms (48) **62.5 53.7 63.1 54.4**

896 (56)

59.9*

(UperNet)

SeMask

Semantically Masked Transformers for Semantic Segmentation

SeMask results

(a) Image

(b) Swin-T FPN	

Method	Backbone	mIoU (%)	MS mIoU (%)
CNN Backbones			
PSANet [55]	ResNet-101	77.94	79.05
DeepLabV3+ [7]	Xception-71	-	79.55
CCNet [25]	ResNet-101	80.50	81.30
Transformer Backbones			
Seg-L-Mask/16 [44]	ViT-L/16 [†]	79.10	81.30
Swin-L FPN [37]	Swin-L [†]	78.03	79.53
MaskFormer [9]	ResNet-101	78.50	80.30
Mask2Former [8]	Swin-L [†]	83.30	84.30
HRNetV2-OCR+PSA [35]	HRNetV2-W48 [†]	_	86.95
SeMask-L FPN (Ours)	SeMask Swin-L [†]	78.53	80.39
SeMask-L Mask2Former (Ours)	SeMask Swin-L ^{\dagger}	83.97	84.98
(c) Ours	(d) Ground Truth		

CvT: Introducing Convolutions to Vision Transformers

CT	Method Type	Network	#Param.	image	FLOPs	ImageNet	Real	V2 top-1 (%)	
CVI	Wethod Type	ResNet-50 [15]	25	224^2	4.1	76.2	82.5	63.3	
	Convolutional Networks	ResNet-101 [15]	45	224^2	7.9	77.4	83.7	65.7	
		ResNet-152 [15]	60	224^{2}	11	78.3	84.1	67.0	
		ViT-B/16 [11]	86	384^2	55.5	77.9	83.6	_	
		ViT-L/16 [11]	307	384^2	191.1	76.5	82.2	-	
		DeiT-S [30][arxiv 2020]	22	224^{2}	4.6	79.8	85.7	68.5	
		DeiT-B [30][arxiv 2020]	86	224^2	17.6	81.8	86.7	71.5	
To an formation	Transformer	PVT-Small [34][arxiv 2021]	25	224^{2}	3.8	79.8	-	_	
	Transformers	PVT-Medium [34][arxiv 2021]	44	224^{2}	6.7	81.2	-	-	
		PVT-Large [34][arxiv 2021]	61	$ 224^2$	9.8	81.7	-	-	
		T2T-ViT _t -14 [41][arxiv 2021]	22	224^{2}	6.1	80.7	-	_	
		T2T-ViT _t -19 [41][arxiv 2021]	39	224^{2}	9.8	81.4		_	
		T2T-ViT _t -24 [41][arxiv 2021]	64	224^2	15.0	82.2	-	-	
		TNT-S [14][arxiv 2021]	24	224^{2}	5.2	81.3	_	_	
		TNT-B [14][arxiv 2021]	66	224^{2}	14.1	82.8	-	-	
		Ours: CvT-13	20	224^{2}	4.5	81.6	86.7	70.4	
	Competitional Transform and	Ours: CvT-21	32	224^{2}	7.1	82.5	87.2	71.3	
	Convolutional Transformers	Ours: CvT-13 _{↑384}	20	384^2	16.3	83.0	87.9	71.9	
		Ours: $CvT-21_{\uparrow 384}$	32	384^2	24.9	83.3	87.7	71.9	
		Ours: CvT-13-NAS	18	224^{2}	4.1	82.2	87.5	71.3	
	Convolution Networks $_{22k}$	BiT-M _{↑480} [18]	928	$ 480^2$	837	85.4	_	_	
		ViT-B/16 _{↑384} [11]	86	384^2	55.5	84.0	88.4	_	
	$Transformers_{22k}$	ViT-L/16 _{↑384} [11]	307	384^2	191.1	85.2	88.4	_	
		ViT-H/16 _{↑384} [11]	632	384^2	-	85.1	88.7	_	
		Ours: CvT-13 _{↑384}	20	384^2	16	83.3	88.7	72.9	
	Convolutional Transformers $_{22k}$	Ours: $CvT-21_{\uparrow 384}$	32	384^2	25	84.9	89.8	75.6	
oon Loorning - Tro	pc	Ours: CvT-W24 _{†384}	277	384^{2}	193.2	87.7	90.6	78.8	

CoAtNet

- CoAtNet: Marrying Convolution and Attention for All Data Sizes
- Depthwise convolution merged into attention layers with simple relative attention
- Stacking convolutional and attention layers

<u>Dai et al., 2021</u>

$$y_{i} = \sum_{j \in \mathcal{L}(i)} w_{i-j} \odot x_{j} \quad \text{(depthwise convolution)}$$

$$y_{i} = \sum_{j \in \mathcal{G}} \underbrace{\frac{\exp\left(x_{i}^{\top} x_{j}\right)}{\sum_{k \in \mathcal{G}} \exp\left(x_{i}^{\top} x_{k}\right)}}_{A_{i,j}} x_{j} \quad \text{(self-attention)} \quad \underbrace{\frac{\text{Properties}}{\text{Input-adaptive Weighting}}}_{\text{Global Receptive Field}} \qquad \checkmark$$

$$y_{i}^{\text{pre}} = \sum_{j \in \mathcal{G}} \frac{\exp\left(x_{i}^{\top} x_{j} + w_{i-j}\right)}{\sum_{k \in \mathcal{G}} \exp\left(x_{i}^{\top} x_{k} + w_{i-k}\right)} x_{j}$$

generalization capability:

 $C-C-C-C \approx C-C-C-T \ge C-C-T-T > C-T-T-T \gg VIT_{REL}$

model capacity:

 $C\text{-}C\text{-}T\text{-}T \approx C\text{-}T\text{-}T\text{-}T > V\text{I}T_{\text{rel}} > C\text{-}C\text{-}C\text{-}T > C\text{-}C\text{-}C\text{-}C$

REL	Metric	C-C-T-T	C-T-T-T	
	Pre-training Precision@1 (JFT)	34.40	34.36	
C	Transfer Accuracy 224x224	82.39	81.78	
C	Transfer Accuracy 384x384	84.23	84.02	

CoAtNet results

CoAtNet-	CoAtNet-3 CoAtNet-2			88.55 (ViT-H/14 JFT Pre-train)	88.56 CoAtNe		
CoAtNet-1	SwinTFM	CalT	88 (%) 2 87	•	CVT		
82 CoAtNet-0	DeiT		ageNet Top-1 Accura	HaloNet	SwinTFM		
30 0 5 10 15 FI	5 20 25 .OPs (Billions)	30 35	84 83	0 50 100 150 Params (Mi	200 250 300 illions)		
Models	Eval Size	#Params	#FLOPs	TPUv3-core-days	Top-1 Accuracy		
ResNet + ViT-L/16	384^{2}	330M	-	-	87.12		
ViT-L/16	512^{2}	307M	364B	0.68K	87.76		
ViT-H/14	518^{2}	632M	1021B	2.5K	88.55		
NFNet-F4+	512^{2}	527M	367B	1.86K	89.2		
CoAtNet-3 [†]	384^{2}	168M	114B	0.58K	88.52		
CoAtNet-3 [†]	512^{2}	168M	214B	0.58K	88.81		
CoAtNet-4	512^{2}	275M	361B	0.95K	89.11		
CoAtNet-5	512^{2}	688M	812B	1.82K	89.77		
ViT-G/14	518^{2}	1.84B	5160B	>30K ^{\$}	90.45		
CoAtNet-6	512^{2}	1.47B	1521B	6.6K	90.45		
CoAtNet-7 512^2		2 4 4 D	2586D	20.1V	00.00		

DETR - End-to-End Object Detection with Transformers

DETR transformer architecture

DETR detection results

Model		GFLOPS/FPS	#params	AP	AP_{50}	AP_{75}	AP_{S}	AP_{M}	AP_{L}	
Faster RCNN	N-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5	
Faster RCNN	N-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0	
Faster RCNN	N-R101-FPN	246/20	6 0M	42.0	62.5	45.9	25.2	45.6	54.6	
Faster RCNN	N-DC5+	320/16	$166 \mathrm{M}$	41.1	61.4	44.3	22.9	45.9	55.0	
Faster RCNN	N-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4	
Faster RCNN	N-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0	
DETR		86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1	
DETR-DC5		187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1	
DETR-R101		152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8	
DETR-DC5-	R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3	
#layers	GFLOPS/FP	S #params	AP	AP_{50}	AI	$\mathbf{P}_{\mathbf{S}}$	AP _M	AF	AP_{L}	
0	76/28	$33.4\mathrm{M}$	36.7	57.4	16	.8	39.6	54.	54.2	
3	81/25	$37.4\mathrm{M}$	40.1	60.6	18	.5	43.8	58.	.6	
6	86/23	41.3M	40.6	61.6	19	.9	44.3	60.	2	
12	95/20	$49.2 \mathrm{M}$	41.6	62.1	19	.8	44.9	61.	.9	

DETR detection

self-attention(430, 600)

self-attention(520, 450)

self-attention(440, 1200)

DETR box prediction

DETR panoptic segmentation

Panoptic segmentation head

DETR panoptic segmentation results

kall-stonedoor-stuff potted plan vase counter sink	Cabinet C	nicrowave			sky	bus		building	giraffe	e tree git	affe grass
Model	Backbone	PQ	SQ	RQ	$ \mathrm{PQ}^{\mathrm{th}} $	$\mathrm{SQ}^{\mathrm{th}}$	$\mathrm{RQ}^{\mathrm{th}}$	$ \mathrm{PQ}^{\mathrm{st}} $	$\mathrm{SQ}^{\mathrm{st}}$	$\mathrm{RQ}^{\mathrm{st}}$	AP
PanopticFPN++	R50	42.4	79.3	51.6	49.2	82.4	58.8	32.3	74.8	40.6	37.7
UPSnet	R50	42.5	78.0	52.5	48.6	79.4	59.6	33.4	75.9	41.7	34.3
UPSnet-M	R50	43.0	79.1	52.8	48.9	79.7	59.7	34.1	78.2	42.3	34.3
PanopticFPN++	R101	44.1	79.5	53.3	51.0	83.2	60.6	33.6	74.0	42.1	39.7
DETR	R50	43.4	79.3	53.8	48.2	79.8	59.5	36.3	78.5	45.3	31.1
DETR-DC5	R50	44.6	79.8	55.0	49.4	80.5	60.6	37.3	78.7	46.5	31.9
DETR-R101	R101	45.1	79.9	55.5	50.5	80.9	61.7	37.0	78.5	46.0	33.0

Deformable DETR

Deformable transformers for end-to-end object detection

Deformable DETR

Multiscale deformable attention

$$\begin{aligned} \text{MultiHeadAttn}(\boldsymbol{z}_{q}, \boldsymbol{x}) &= \sum_{m=1}^{M} \boldsymbol{W}_{m} \big[\sum_{k \in \Omega_{k}} A_{mqk} \cdot \boldsymbol{W}_{m}^{\prime} \boldsymbol{x}_{k} \big] \\ \text{DeformAttn}(\boldsymbol{z}_{q}, \boldsymbol{p}_{q}, \boldsymbol{x}) &= \sum_{m=1}^{M} \boldsymbol{W}_{m} \big[\sum_{k=1}^{K} A_{mqk} \cdot \boldsymbol{W}_{m}^{\prime} \boldsymbol{x}(\boldsymbol{p}_{q} + \Delta \boldsymbol{p}_{mqk}) \big] \\ \text{MSDeformAttn}(\boldsymbol{z}_{q}, \hat{\boldsymbol{p}}_{q}, \{\boldsymbol{x}^{l}\}_{l=1}^{L}) &= \sum_{m=1}^{M} \boldsymbol{W}_{m} \big[\sum_{l=1}^{L} \sum_{k=1}^{K} A_{mlqk} \cdot \boldsymbol{W}_{m}^{\prime} \boldsymbol{x}^{l}(\phi_{l}(\hat{\boldsymbol{p}}_{q}) + \Delta \boldsymbol{p}_{mlqk}) \big] \end{aligned}$$

Deformable DETR results

Method	Epochs	AP	AP ₅₀	AP ₇₅	APs	AP _M	APL	params	FLOPs	Training GPU hours	Inference FPS
Faster R-CNN + FPN	109	42.0	62.1	45.5	26.6	45.4	53.4	42M	180G	380	26
DETR	500	42.0	62.4	44.2	20.5	45.8	61.1	41M	86G	2000	28
DETR-DC5	500	43.3	63.1	45.9	22.5	47.3	61.1	41M	187G	7000	12
DETR-DC5	50	35.3	55.7	36.8	15.2	37.5	53.6	41M	187G	700	12
DETR-DC5 ⁺	50	36.2	57.0	37.4	16.3	39.2	53.9	41M	187G	700	12
Deformable DETR	50	43.8	62.6	47.7	26.4	47.1	58.0	40M	173G	325	19
+ iterative bounding box refinement	50	45.4	64.7	49.0	26.8	48.3	61.7	40M	173G	325	19
++ two-stage Deformable DETR	50	46.2	65.2	50.0	28.8	49.2	61.7	40M	173G	340	19

UP-DETR

- UP-DETR: Unsupervised Pre-training for Object Detection with Transformer
 - Unsupervised pretraining on a large-scale dataset
 - Detect randomly cropped query patches
 - Supervised fine-tunning as in DETR
- Single-query and multiply-query patches for unsupervised pretraining

UP-DETR results

Pre-training helps!

Model	Backbone	Epochs	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
Faster R-CNN † [26]	R101-FPN	-	36.2	59.1	39.0	18.2	39.0	48.2
Mask R-CNN † [18]	R101-FPN	-	38.2	60.3	41.7	20.1	41.1	50.2
Grid R-CNN † [31]	R101-FPN	-	41.5	60.9	44.5	23.3	44.9	53.1
Double-head R-CNN [40]	R101-FPN	-	41.9	62.4	45.9	23.9	45.2	55.8
RetinaNet † [27]	R101-FPN	-	39.1	59.1	42.3	21.8	42.7	50.2
FCOS † [38]	R101-FPN	-	41.5	60.7	45.0	24.4	44.8	51.6
DETR [5]	R50	500	42.0	62.4	44.2	20.5	45.8	61.1
Faster R-CNN	R50-FPN	$3 \times$	40.2	61.0	43.8	24.2	43.5	52.0
DETR (Supervised CNN)	R50	150	39.5	60.3	41.4	17.5	43.0	59.1
DETR (SwAV CNN) [7]	R50	150	39.7	60.3	41.7	18.5	43.8	57.5
UP-DETR	R50	150	40.5 (+0.8)	60.8	42.6	19.0	44.4	60.0
Faster R-CNN	R50-FPN	$9 \times$	42.0	62.1	45.5	26.6	45.4	53.4
DETR (Supervised CNN)	R50	300	40.8	61.2	42.9	20.1	44.5	60.3
DETR (SwAV CNN) [7]	R50	300	42.1	63.1	44.5	19.7	46.3	60.9
UP-DETR	R50	300	42.8 (+0.7)	63.0	45.3	20.8	47.1	61.7

UP-DETR results

- Unsupervised one-shot detection
- Deep-learning-based template matching

MaskFormer

Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer results

Mask2Former

Masked-attention Mask Transformer for Universal Image Segmentation

Mask2Fo	Mask2Former results								Ince	semant	
						51.1 52. Univer	57.8 7 rsal arcl	49.5 40 hitectures	50.1 .1	57.0 55.6	57.7
						SOTA specialized architectures: Mask-DeepLab Max-DeepLab					
method	backbone	query type	epochs	PQ	PQ^{Th}	PQ St	AP_{pan}^{Th}	mIoU _{pan}	#params.	FLOPs	fps
DETR [5]	R50	100 queries	500+25	43.4	48.2	36.3	31.1	-	-	-	-
MaskFormer [14]	R50	100 queries	300	46.5	51.0	39.8	33.0	57.8	45M	181G	17.6
Mask2Former (ours)	R50	100 queries	50	51.9	57.7	43.0	41.7	61.7	44M	226G	8.6
DETR [5]	R101	100 queries	500+25	45.1	50.5	37.0	33.0	-	-	-	-
MaskFormer [14]	R101	100 queries	300	47.6	52.5	40.3	34.1	59.3	64M	248G	14.0
Mask2Former (ours)	R101	100 queries	50	52.6	58.5	43.7	42.6	62.4	63M	293G	7.2
Max-DeepLab [52]	Max-L	128 queries	216	51.1	57.0	42.2	-	-	451M	3692G	-
MaskFormer [14]	Swin- L^{\dagger}	100 queries	300	52.7	58.5	44.0	40.1	64.8	212M	792G	5.2
K-Net [62]	Swin-L ^{\dagger}	100 queries	36	54.6	60.2	46.0	-	-	-	-	-
Mask2Former (ours)	Swin-L ^{\dagger}	200 queries	100	57.8	64.2	48.1	48.6	67.4	216M	868G	4.0
Deep Learning – Transform	ers in compute	er vision						<u> </u>	in et a	al., 20	<u>14</u> 49

DINO

- Emerging Properties in Self-Supervised Vision Transformers
- Self <u>di</u>stillation with <u>no</u> labels

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

```
gs, gt: student and teacher networks
 C: center (K)
 tps, tpt: student and teacher temperatures
 1, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples
    x1, x2 = augment(x), augment(x) # random views
    s1, s2 = qs(x1), qs(x2) \# student output n-by-K
    t1, t2 = qt(x1), qt(x2) # teacher output n-by-K
    loss = H(t1, s2)/2 + H(t2, s1)/2
    loss.backward() # back-propagate
    # student, teacher and center updates
    update(qs) # SGD
    gt.params = l*gt.params + (1-1)*gs.params
    C = m * C + (1-m) * cat([t1, t2]).mean(dim=0)
def H(t, s):
    t = t.detach() # stop gradient
    s = softmax(s / tps, dim=1)
    t = softmax((t - C) / tpt, dim=1) # center + sharpen
    return - (t * log(s)).sum(dim=1).mean()
```

DINO self-attention

DINO segmentation results

Supervised

DINO

	Random	Supervised	DINO
DeiT-S/16	22.0	27.3	45.9
DeiT-S/8	21.8	23.7	44.7

Deep Learning – Transformers in computer visio

Linear and k-NN classification on ImageNet

Method	Arch.	Param.	im/s	Linear	k-NN
Supervised	RN50	23	1237	79.3	79.3
SCLR [12]	RN5 0	23	1237	69.1	60.7
MoCov2 [14]	RN5 0	23	1237	71.1	61.9
InfoMin [64]	RN5 0	23	1237	73.0	65.3
BarlowT [78]	RN5 0	23	1237	73.2	66.0
OBoW [25]	RN5 0	23	1237	73.8	61.9
BYOL [28]	RN5 0	23	1237	74.4	64.8
DCv2 [10]	RN5 0	23	1237	75.2	67.1
SwAV [10]	RN50	23	1237	75.3	65.7
DINO	RN50	23	1237	75.3	67.5
Supervised	DeiT-S	21	1007	79.8	79.8
BYOL* [28]	DeiT-S	21	1007	71.4	66.6
MoCov2* [14]	DeiT-S	21	1007	72.7	64.4
SwAV* [10]	DeiT-S	21	1007	73.5	66.3
DINO	DeiT-S	21	1007	77.0	74.5

Comparison across architectures									
SCLR [12]	RN50w4	375	117	76.8	69.3				
SwAV [10]	RN50w2	93	384	77.3	67.3				
BYOL [28]	RN50w2	93	384	77.4	_				
DINO	ViT-B/16	85	312	78.2	76.1				
SwAV [10]	RN50w5	586	76	78.5	67.1				
BYOL [28]	RN50w4	375	117	78.6	_				
BYOL [28]	RN200w2	250	123	79.6	73.9				
DINO	DeiT-S/8	21	180	79.7	78.3				
SCLRv2 [13]	RN152w3+SK	794	46	79.8	73.1				
DINO	ViT-B/8	85	63	80.1	77.4				

DINO experimental results

 DAVIS 2017 Video object segmentation

Method	Data	Arch.	$(\mathcal{J}\&\mathcal{F})_m$	\mathcal{J}_m	\mathcal{F}_m
Supervised					
ImageNet	INet	DeiT-S/8	66.0	63.9	68.1
STM [46]	I/D/Y	RN50	81.8	79.2	84.3
Self-supervise	ed				
CT [68]	VLOG	RN5 0	48.7	46.4	50.0
MAST [38]	YT-VOS	RN18	65.5	63.3	67.6
STC [35]	Kinetics	RN18	67.6	64.8	70.2
DINO	INet	DeiT-S/16	61.8	60.2	63.4
DINO	INet	ViT-B/16	62.3	60.7	63.9
DINO	INet	DeiT-S/8	69.9	66.6	73.1
DINO	INet	ViT-B/8	71.4	67.9	74.9

 Transfer learning by fine-tuning pre-trained models on different datasets

	Cifar ₁₀	Cifar ₁₀₀	INat ₁₈	INat ₁₉	Flwrs	Cars	INet
DeiT-S/16							
Sup. [66]	99.0	89.5	70.7	76.6	98.2	92.1	79.9
DINO	99.0	90.5	72.0	78.2	98.5	93.0	81.5
ViT-B/16							
Sup. [66]	99.0	90.8	73.2	77.7	98.4	92.1	81.8
DINO	99.1	91.7	72.6	78.6	98.8	93.0	82.8

DINOv2

- DINOv2: Learning Robust Visual Features without Supervision
- Discriminative self-supervised learning
- No fine-tunning general multipurpose backbone
- Foundation model
- Multipupose backbone -high-performance features to be used
 - classification, segmantation, image retrieval, depth estimation
- Automatic pipeline to build a dedicated, diverse, and curated image dataset
- ViT model with 1B parameters
 - distill it into a series of smaller models
- Accelerating and stabilizing the training at scale
- 2×faster and require 3×less memory than similar self-supervised methods
- SOTA results

DINO

DINOv2

DINOv2

Tasks and design choices

<u>Khan et al., 2021</u>

	Task	Method	Design Highlights (focus on differences with the standard form)	Input Data Type	Label Type	Loss
	Image Classification	ViT [11]	Directly adopted NLP Transformer En- coder for images, Mechanism to linearly embed image patches with positional embedding suitable for the Encoder.	2D Image	Class labels	Cross-entropy
	-	DeiT [12]	Transformer as s student while CNN as a teacher, Distillation tokens to produce estimated labels from teacher, Attention between class and distillation tokens.	2D Image	Class labels	Cross-entropy, Distillation loss based on KL-divergence
		CLIP [81]	Jointly train image and text encoders on image-text pairs, to maximize similarity of valid pairs and minimize otherwise	2D Images & texts	Image-text pairs	Symmetric cross-entropy
	Object Detection	DETR [13]	Linear projection layer to reduce CNN feature dimension, Spatial positional embedding added to each multi-head self-attention layer of both encoder and decoder. Object queries (output posi- tional encoding) added to each multi- head self-attention layer of decoder.	2D Image	Class labels	Hungarian loss based on bipartite matching between predicted and ground truths
	-	D-DETR [14]	Deformable Transformer consists of de- formable attention layers to introduce sparse priors in Transformers, Multi- scale attention module.	2D Image	Class labels	Hungarian loss
	Low Shot Learning	CT [25]	Self-supervised pretraining, Query- aligned class prototypes that provide spatial correspondence between the support-set images and query image.	2D Image	Pretraining without labels and few-shot learning with Class labels	Normalized Cross-entropy
	Image Colorization	ColTran [24]	Conditional Row/column multi-head attention layers, Progressive multi-scale colorization scheme.	2D Image	2D Image	Negative log-likelihood of the images
Deep Learnin	Action Recognition	ST-TR [164]	Spatial and Temporal self-attention to operates on graph data such as joints in skeletons.	Skeleton	Action Classes	Cross-entropy

Tasks and design choices

<u>Khan et al., 2021</u>

	Task	Method	Design Highlights (focus on differences with the standard form)	Input Data Type	Label Type	Loss
	Super-resolution	TTSR [16]	Texture enhancing Transformer module, Relevance embeddings to compute the relevance between the low-resolution and reference image.	2D Image	2D Image	Reconstruction loss, Perceptual loss defined on pretrained VGG19 features.
	Multi-Model Learning	Oscar [36]	Transformer layer to jointly process triplet representation of image-text [words, tags, features], Masked tokens to represent text data.	2D Image	Captions, Class labels, Object tags	Negative log-likelihood of masked tokens, Contrastive binary cross-entropy
	3D Classifica- tion/Segmentation	PT [173]	Point Transformer block, Transition down block to reduce cardinality of the point set, Transition up for dense pre- diction tasks.	CAD models, 3D object part segmentation	Object and shape categories	Cross-entropy
	3D Mesh Reconstruction	METRO [37]	Progressive dimensionality reduction across Transformer layers, Positional Encoding with 3D joint and 3D vertex coordinates, Masked vertex/joint mod- eling.	2D Image	3D Mesh + Human Pose	L_1 loss on mesh vertices and joints in 3D and 2D projection.
	Vision and Language Navigation	Chen et al. [149]	Uni-modal encoders on language and map inputs followed by a cross-modal transformer, Trajectory position encod- ings in the map encoder.	Instruction text + RGBD panorama + Topological Environment Map	Navigation Plan	Cross-entropy over nodes and [stop] action
	Referring Image Segmentation	CMSA [15]	Multimodal feature, Cross-modal self- attention on multiple levels and their fusion using learned gates.	2D Image + Language expression	Segmentation mask	Binary cross-entropy loss
Deep Learnin	Video Classification	Lee et al. [134]	Operates on real-valued audio-visual signals instead of tokens, Contrastive learning for pre-training, End-to-end multimodal transformer learning.	Audio-Visual	Activity labels	Contrastive InfoNCE loss and Binary cross-entropy

Advantages and limitations

Khan et al., 2021

Task	Method	Metric	Dataset	Performance	Highlights	Limitations
Image Classifica- tion	ViT [11] ICLR'21	Top-1 Acc.	ImageNet	88.55	a) First application of Transformer (global self-attention) directly on image patches, b) Convolution-free network architecture, c) Outper- forms CNN models such as ResNet.	a) Requires training on large-scale data <i>e.g.</i> , 300-Million images, b) Requires careful transfer learning to the new task, c) Requires large model with 632-Million parameters to achieve SOTA results.
	DeiT [12] arXiv'20	Top-1 Acc.	ImageNet	83.10	 a) Successfully trains Transformer on ImageNet only, b) Introduces attention-based distillation method. c) Produces competitive perfor- mance with small (86-Million pa- rameters) Transformers. 	a) Requires access to pretrained CNN based teacher model thus per- formance depends on the quality of the teacher model.
Low-Shot Learning	CT [25] NeurIPS'20	Top-1 Acc.	ImageNet COCO	62.25 60.35	a) Self-supervised pre-training mechanism that does not need manual labels, b) Dynamic inference using Transformer achieving stat-of-the-art results.	Proposed algorithm is limited in its capacity to perform on datasets that lack spatial details such as texture.
Object Detection	DETR [13] ECCV'20	AP	COCO	44.9	a) Use of Transformer allows end- to-end training pipeline for object detection, b) Removes the need for hand-crafted post-processing steps.	a) Performs poorly on small objects,b) Requires long training time to converge.
	D-DETR [14] ICLR'21	AP	COCO	43.8	a) Achieves better performance on small objects than DETR [13], b) Faster convergence than DETR [13]	Obtain SOTA results with 52.3 AP but with two stage detector design and test time augmentations.
Image Coloriza- tion	ColTran [24] ICLR'21	FID	ImageNet	: 19.71	a) First successful application of Transformer to image colorization,b) Achieves SOTA FID score.	a) Lacks end-to-end training, b) limited to images of size 256×256 .
Action Recogni- tion	ST-TR [164] arXiv'20	Top-1 Acc.	NTU 60/120	94.0/84.7	a) Successfully applies Transformer to model relations between body joints both in spatial and temporal domain, b) Achieves SOTA results.	Proposed Transformers do not pro- cess joints directly rather operate on features extracted by a CNN, thus the overall model is based on hand- crafted design.

Advantages and limitations

<u>Khan et al., 2021</u>

Task	Method	Metric	Dataset I	Performance	Highlights	Limitations		
Super- Resolution	TTSR [16] CVPR'20	PSNR/ SSIM	CUFED5 Sun80 Urban100 Manga109	27.1 / 0.8 30.0 / 0.81 25.9 / 0.78 30.1 / 0.91	a) Achieves state-of-the-art super- resolution by using attention, b) Novel Transformer inspired archi- tectures that can process multi-scale features.	a) Proposed Transformer does not process images directly but features extracted by a convolution based network, b) Model with large num- ber of trainable parameters, and c) Compute intensive.		
Multi- Model Learning	ViLBERT [133] NeurIPS'19	Acc./ mAP (<i>R</i> @1)	VQA [135]/ Retrieval [181]	70.6/ 58.2	a) Proposed Transformer architec- ture can combine text and visual information to understand inter- task dependencies, b) Achieves pre- training on unlabelled dataset.	a) Requires large amount of data for pre-training,b) Requires fine tuning to the new task.		
	Oscar [36] ECCV'20	Acc./ VQA [182]/ mAP (R@1) COCO 80.37/57.5		80.37/57.5	a) Exploit novel supervisory signal via object tags to achieve text and image alignment, b) Achieves state- of-the-art results.	Requires extra supervision through pre-trained object detectors thus performance is dependent on the quality of object detectors.		
	UNITER [35] ECCV'20	Acc./ Avg. (R@1/5/10)	VQA [135]/ Flickr30K [183]	72.47/83.72	Learns fine-grained relation align- ment between text and images	Requires large multi-task datasets for Transformer training which lead to high computational cost.		
3D Analysis	Point Trans- former [173] arXiv'20	Top-1 Acc. IoU	ModelNet40 [175]	92.8 85.9	a) Transformer based attention ca- pable to process unordered and un- structured point sets, b) Permuta- tion invariant architecture.	a) Only moderate improvements over previous SOTA, b) Large num- ber of trainable parameters around $6 \times$ higher than PointNet++ [184].		
	METRO [37] arXiv'20	MPJPE PA-MPJPE MPVE	3DPW [178]	77.1 47.9 88.2	a) Does not depend on parametric mesh models so easily extendable to different objects, b) Achieves SOTA results using Transformers.	Dependent on hand-crafted net- work design.		

Open problems and opportunities

- High computational cost
- Large data requirements
- Large memory requirements
- Vision tailored transformer designs
- Interpretability of transformers
- Hardware efficient designs
- Combinations with CNNs?
- Inductive bias?
- A plethora of papers published very recently
- SOTA results

MLP-Mixer: An all-MLP Architecture for Vision

No convolutions, no attention, only MLPs!

Tolstikhin et al., 2021

MLP-Mixer results

ImNet	ReaL	Avg 5	VTAB-1k	Throughput	TPUv3
top-1	top-1	top-1	19 tasks	img/sec/core	core-days

		Pre-trained on ImageNet-21k (public)									
70 -			• HaloNe	t [51]	85.8					120	0.10k
[%]				_/16	84.15	87.86	93.91	74.95	5	105	0.41k
p-1				6 [44]	85.30	88.62	94.39	72.72	2	32	0.18k
et T 00 -			• BiT-R1	52x4 [22]	85.39		94.04	70.64	ŀ	26	0.94k
nageN				Pre-trained on JFT-300M (proprietary)							
50 J	Miyor	• NFNet-	F4+ 📮]	89.2					46	1.86k	
5-S	Mixer-	 Mixer-I 	H/14	87.94	90.18	95.71	75.33	3	40	1.01k	
Jean	Mixer-	L/16 - ViT-L/16	 BiT-R1. 	52x4 [22]	87.54	90.54	95.33	76.29)	26	9.90k
5	BiT-R1	52x2	• ViT-H/1	[4 <mark>[14</mark>]	88.55	90.72	95.97	77.63	3	15	2.30k
30	10 M 30 M 100 M 300 M ~3B		Pre-trained on unlabelled or weakly labelled data (proprietary)								
			• MPL [3	4]	90.0	91.12					20.48k
92	● Mixer (i21k JFT) ▷ NFNet (JFT) ◀ ViT (i21k JFT) ᅌ MPL (JFT)		 ALIGN 		88.64			79.99)	15	14.82k
y [%	HaloNet (i21k) ☆ ALIGN (web) BIT (i21k LIFT)	~		~	~					~	
urac.		Specification		S/32	S/16	B/32	2 B/1	6	L/32	L/16	H/14
r acci	/ ×	Number of laye	ers	8	8	12	12	2	24	24	32
"sfe		Patch resolution	$P \times P$	32×32	16×16	32×3	32 16×	16	32×32	16×16	14×14
trar	e e e e e e e e e e e e e e e e e e e	Hidden size C		512	512	768	76	8	1024	1024	1280
Net 86		Sequence lengt	Sequence length S		196	49	19	6	49	196	256
nage		MLP dimension	n D_C	2048	2048	3072	2 307	72	4096	4096	5120
<u>ه</u> 4		MLP dimension	$n D_{q}$	256	256	384	38	4	512	512	640
	10 ⁻¹ 10 ⁰ 10 ¹	Parameters (M)		19	18	60	50)	206	207	431
	Total pre-training kilo-TPUV3-core-days			1)	10	00	5,		200	201	1,11

Deep Learning – Transformers in computer visior

Segment Anything

- New task, model, and dataset for image segmentation
- Foundation model Segment Anything Model (SAM)

SAM dataset

- 11M diverse, high-resolution, licensed, and privacy protecting images
- 1.1B high-quality segmentation masks, 99.1% of which generated fully automatically

SAM model

SAM prompting

- Mask
- Points

"a wheel"

BoxText

"beaver tooth grille"
"beaver tooth grille"

0

SAM - Zero-shot edge detection

SAM - Similarities of mask embeddings

SAM - Zero-shot instance segmentation

