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Transformers in computer vision

▪ Transformers in Vision: A Survey

Khan et al., 2021

https://arxiv.org/abs/2101.01169
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Benchmark leader-boards [https://paperswithcode.com]
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Transformers architecture

Khan et al., 2021Vaswani et al., 2017

https://arxiv.org/abs/2101.01169
https://arxiv.org/abs/1706.03762
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Image Transformer

▪ Image generation as an autoregressive 
sequence generation problem

▪ Encoder-decoder architecture

▪ Self-attention restricted to local 
neighbourhoods

▪ Still large receptive field

▪ Image generation and super-resolution

Parmar et al., 2018

https://arxiv.org/abs/1802.05751
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Image Transformer results
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ViT - Vision Transformer

▪ AN IMAGE IS WORTH 16X16 WORDS: 
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Dosovitskiy et al., 2020

https://arxiv.org/abs/2010.11929
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ViT results

Deng et al., 2009

Ridnik et al., 2021

Sun et al., 2017

https://www.researchgate.net/publication/221361415_ImageNet_a_Large-Scale_Hierarchical_Image_Database
https://arxiv.org/abs/2104.10972v4
https://arxiv.org/abs/1707.02968
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ViT performance
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ViT details

▪ Initial linear embedding of RGB 
values 

▪ Similarity of position embeddings

▪ Attention distance
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Attention maps
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DeiT

▪ DeiT - Training data-efficient image transformers 
& distillation through attention

▪ Soft and hard-label distillation

▪ Student-teacher architecture

▪ CNN or Transformer-based teacher

▪ Distillation token

▪ to reproduce the label predicted by the teacher

▪ Fine-tuning with distillation

▪ Classification with joint classifiers

▪ Trained on a single 8-GPU node in 2-3 days

▪ Imagenet as the sole training set

▪ Data and compute efficient!

Touvron et al., 2021

https://arxiv.org/abs/2012.12877
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DeiT ablation study
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DeiT results
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MViT - Multiscale Vision Transformers

▪ Several channel-resolution ‘scale’ stages

▪ From image resolution and small channel dimension

to reduced resolution and expanded channel capacity

▪ Pooling attention

Fan et al., 2021

https://arxiv.org/abs/2104.11227
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MViT

ViT MViT

179.6G FLOPS

87.2M param

68.5% top1 acc.

70.5G FLOPS

36.5M param

77.2% top1 acc.
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MViT results

Video recognition on Kinetics-400 Image recognition on ImageNet
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Swin Transformer

▪ Hierarchical Vision Transformer using Shifted Windows

▪ General purpose transformer backbone

▪ Hierarchical feature maps

▪ Shift of the window partition between consecutive self-attention layers

Liu et al., 2021

https://arxiv.org/abs/2103.14030
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Swin architecture

▪ Patch merging

▪ Regular and shifted window configuration in MSA
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Swin results
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Swin results

Swin as a backbone architecture
• COCO object detection
• ADE20K semantic segmentation
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SwinV2

▪ A res-post-norm to replace the previous
pre-norm configuration

▪ A scaled cosine attention to replace the
original dot product attention

▪ A log-spaced continuous relative position 
bias approach to replace the previous
parameterized approach

▪ Self-supervised pre-training method, 
SimMIM, to reduce the needs of vast la-
beled images

▪ Several tricks for memory efficiency

▪ Up to 3B parameters

▪ Up to 1,536x1,536 image resolution

Liu et al., 2022 Xie et al., 2021

▪ Swin Transformer V2: Scaling Up Capacity and Resolution

https://arxiv.org/abs/2111.09883
https://arxiv.org/abs/2111.09886
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SwinV2 results
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SeMask

▪ Semantically Masked Transformers for Semantic Segmentation

Jain et al., 2021

https://arxiv.org/abs/2112.12782v3


Deep Learning – Transformers in computer vision 26

SeMask results



Deep Learning – Transformers in computer vision 27

CvT: Introducing Convolutions to Vision Transformers

Wu et al., 2021

https://arxiv.org/abs/2103.15808
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CvT
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CoAtNet

▪ CoAtNet: Marrying Convolution and Attention for All Data Sizes

▪ Depthwise convolution merged into attention layers with simple relative attention

▪ Stacking convolutional and attention layers

▪ generalization capability:

▪ model capacity:

Dai et al., 2021

https://arxiv.org/abs/2106.04803v2


Deep Learning – Transformers in computer vision 30

CoAtNet results
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DETR - End-to-End Object Detection with Transformers

Carion et al., 2020

https://arxiv.org/abs/2005.12872
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DETR transformer architecture
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DETR detection results
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DETR detection
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DETR box prediction
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DETR panoptic segmentation

▪ Panoptic segmentation head
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DETR panoptic segmentation results
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Deformable DETR

▪ Deformable transformers for end-to-end object detection

Zhu et al., 2020

https://arxiv.org/abs/2010.04159
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Deformable DETR
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Multiscale deformable attention
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Deformable DETR results
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UP-DETR

▪ UP-DETR: Unsupervised Pre-training for Object Detection with Transformer

▪ Unsupervised pretraining on a large-scale dataset

▪ Detect randomly cropped query patches

▪ Supervised fine-tunning as in DETR

▪ Single-query and multiply-query patches for unsupervised pretraining

Dai et al., 2020

https://arxiv.org/abs/2011.09094
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UP-DETR results

▪ Pre-training helps!



Deep Learning – Transformers in computer vision 44

UP-DETR results
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UP-DETR results

▪ Unsupervised one-shot detection

▪ Deep-learning-based template matching
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MaskFormer

▪ Per-Pixel Classification is Not All You Need for Semantic Segmentation

Cheng et al., 2021

https://arxiv.org/abs/2103.15808
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MaskFormer results

Zhou et al., 2017

https://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf
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Mask2Former

▪ Masked-attention Mask Transformer for Universal Image Segmentation

Cheng et al., 2021b

https://arxiv.org/abs/2112.01527v2
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Mask2Former results

Lin et al., 2014

https://arxiv.org/abs/1405.0312
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DINO

▪ Emerging Properties in Self-Supervised Vision Transformers

▪ Self distillation with no labels

Carionet et al., 2021

https://arxiv.org/abs/2104.14294
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DINO
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DINO self-attention
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DINO segmentation results
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DINO experimental results

▪ Linear and k-NN classification on ImageNet



Deep Learning – Transformers in computer vision 55

DINO experimental results

▪ DAVIS 2017 Video object 
segmentation

▪ Transfer learning by fine-tuning 
pre-trained models on different 
datasets
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DINO



Deep Learning – Transformers in computer vision 57

DINOv2

▪ DINOv2: Learning Robust Visual Features without Supervision

▪ Discriminative self-supervised learning

▪ No fine-tunning – general multipurpose backbone

▪ Foundation model

▪ Multipupose backbone -high-performance features to be used

▪ classification, segmantation, image retrieval, depth estimation

▪ Automatic pipeline to build a dedicated, 
diverse, and curated image dataset

▪ ViT model with 1B parameters

▪ distill it into a series of smaller models

▪ Accelerating and stabilizing the training 
at scale

▪ 2×faster and require 3×less memory 
than similar self-supervised methods

▪ SOTA results

Oquab et al., 2023

https://arxiv.org/abs/2304.07193v1
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DINOv2
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DINOv2
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Tasks and design choices Khan et al., 2021

https://arxiv.org/abs/2101.01169
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Tasks and design choices Khan et al., 2021

https://arxiv.org/abs/2101.01169
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Advantages and limitations Khan et al., 2021

https://arxiv.org/abs/2101.01169
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Advantages and limitations Khan et al., 2021

https://arxiv.org/abs/2101.01169
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Open problems and opportunities

▪ High computational cost

▪ Large data requirements

▪ Large memory requirements

▪ Vision tailored transformer designs

▪ Interpretability of transformers

▪ Hardware efficient designs

▪ Combinations with CNNs?

▪ Inductive bias?

▪ A plethora of papers published very recently

▪ SOTA results
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MLP-Mixer: An all-MLP Architecture for Vision

▪ No convolutions, no attention, only MLPs! Tolstikhin et al., 2021

https://arxiv.org/abs/2105.01601
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MLP-Mixer results
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Segment Anything

▪ New task, model, and dataset for image segmentation

▪ Foundation model – Segment Anything Model (SAM)

Kirillov et al., 2023

https://arxiv.org/abs/2304.02643v1
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SAM dataset

▪ 11M diverse, high-resolution, licensed, and privacy protecting images 

▪ 1.1B high-quality segmentation masks, 99.1% of which generated fully automatically
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SAM model
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SAM prompting

▪ Mask

▪ Points

▪ Box

▪ Text
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SAM - Zero-shot edge detection
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SAM - Similarities of mask embeddings
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SAM - Zero-shot instance segmentation


	Diapozitiv 1: Deep Learning  Transformers in computer vision
	Diapozitiv 2: Transformers in computer vision
	Diapozitiv 3: Benchmark leader-boards
	Diapozitiv 4
	Diapozitiv 5: Transformers architecture
	Diapozitiv 6: Image Transformer
	Diapozitiv 7: Image Transformer results
	Diapozitiv 8: ViT - Vision Transformer
	Diapozitiv 9: ViT results
	Diapozitiv 10: ViT performance
	Diapozitiv 11: ViT details
	Diapozitiv 12: Attention maps
	Diapozitiv 13: DeiT
	Diapozitiv 14: DeiT ablation study
	Diapozitiv 15: DeiT results
	Diapozitiv 16: MViT - Multiscale Vision Transformers
	Diapozitiv 17: MViT
	Diapozitiv 18: MViT results
	Diapozitiv 19: Swin Transformer
	Diapozitiv 20: Swin architecture
	Diapozitiv 21: Swin results
	Diapozitiv 22: Swin results
	Diapozitiv 23: SwinV2
	Diapozitiv 24: SwinV2 results
	Diapozitiv 25: SeMask
	Diapozitiv 26: SeMask results
	Diapozitiv 27: CvT: Introducing Convolutions to Vision Transformers
	Diapozitiv 28: CvT
	Diapozitiv 29: CoAtNet
	Diapozitiv 30: CoAtNet results
	Diapozitiv 31: DETR - End-to-End Object Detection with Transformers
	Diapozitiv 32: DETR transformer architecture
	Diapozitiv 33: DETR detection results
	Diapozitiv 34: DETR detection
	Diapozitiv 35: DETR box prediction
	Diapozitiv 36: DETR panoptic segmentation
	Diapozitiv 37: DETR panoptic segmentation results
	Diapozitiv 38: Deformable DETR
	Diapozitiv 39: Deformable DETR
	Diapozitiv 40: Multiscale deformable attention
	Diapozitiv 41: Deformable DETR results
	Diapozitiv 42: UP-DETR
	Diapozitiv 43: UP-DETR results
	Diapozitiv 44: UP-DETR results
	Diapozitiv 45: UP-DETR results
	Diapozitiv 46: MaskFormer
	Diapozitiv 47: MaskFormer  results
	Diapozitiv 48: Mask2Former
	Diapozitiv 49: Mask2Former results
	Diapozitiv 50: DINO
	Diapozitiv 51: DINO
	Diapozitiv 52: DINO self-attention
	Diapozitiv 53: DINO segmentation results
	Diapozitiv 54: DINO experimental results
	Diapozitiv 55: DINO experimental results
	Diapozitiv 56: DINO
	Diapozitiv 57: DINOv2
	Diapozitiv 58: DINOv2
	Diapozitiv 59: DINOv2
	Diapozitiv 60: Tasks and design choices
	Diapozitiv 61: Tasks and design choices
	Diapozitiv 62: Advantages and limitations
	Diapozitiv 63: Advantages and limitations
	Diapozitiv 64: Open problems and opportunities
	Diapozitiv 65: MLP-Mixer: An all-MLP Architecture for Vision
	Diapozitiv 66: MLP-Mixer results
	Diapozitiv 67: Segment Anything
	Diapozitiv 68: SAM dataset
	Diapozitiv 69: SAM model
	Diapozitiv 70: SAM prompting
	Diapozitiv 71: SAM - Zero-shot edge detection
	Diapozitiv 72: SAM - Similarities of mask embeddings
	Diapozitiv 73: SAM - Zero-shot instance segmentation

