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Attention is all you need

▪ Attention and self-attention
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Transformer architecture

[Images from:
• Vaswani et.al, NIPS 2017
• http://jalammar.github.io/

illustrated-transformer/
• https://towardsdatascience.com/]Vaswani et al., 2017

https://arxiv.org/abs/1706.03762


Deep Learning – Transformers and NLP 4

The main idea

▪ Machine translation

▪ Variable length sequences

▪ Encoder-decoder architecture
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Transformers architecture

▪ Encoder

▪ Decoder

▪ N=6

▪ Self-attention

▪ Multi-head attention

▪ Normalisation

▪ Feed-forward network

▪ Input embedding

▪ Positional encoding

▪ Masked multi-head attention

▪ Softmax
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Encoder

▪ Self-attention

▪ Feed-forward network
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Self-attention

▪ Compute association of every word to every other word

▪ Scaled dot-product attention

▪ 3 fully connected layers

▪ Query

▪ Key

▪ Value
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Self-attention linear layers



Deep Learning – Transformers and NLP 9

Calculating self-attention
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Calculating self-attention

▪ Matrix multiplication
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Multi-head attention

▪ Several (h=8) self-attentions in parallel

▪ triplets of weight matrices (linear layers)
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Multi-head attention

▪ Concatenation

▪ Linear layer
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Multi-head self-attention
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Multi-head self-attention

▪ Different heads associate different words
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Positional encoding

▪ Keep order information



Deep Learning – Transformers and NLP 16

Feed-forward network

▪ Residual connection

▪ Layer normalisation

▪ Feed-forward network

Linear

Linear

ReLU

Ba et al., 2016

https://arxiv.org/abs/1607.06450
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Encoder
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Decoder

▪ Similar architecture as Encoder

▪ Input and positional encoding

▪ Self-attention

▪ Feed-forward network

▪ Masked Multi-head attention

▪ Additional attention layer (Encoder-decoder 
attention) connected to encoder

▪ Linear and Softmax layers on the output of the 
decoder
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Encoder-decoder attention



Deep Learning – Transformers and NLP 20

Masked self-attention

▪ Prevent attention to not yet generated words

▪ Multiply attention scores with the look-ahead mask

I am a stud
ent

I

am

a

student

I am a stud
ent

I 0 -∞ -∞ -∞

am 0 0 -∞ -∞

a 0 0 0 -∞

student 0 0 0 0
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Final linear and SoftMax layer
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Decoding
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Experimental results
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RNNs vs. Transformers

RNNs

▪ Problems with long range 
dependencies

▪ Vanishing and exploding 
gradient

▪ Large number of training steps

▪ Recurrence prevents parallel 
computation

▪ Recurrence enables arbitrary 
sequence length

▪ No pretraining is common

Transformers

▪ Facilitate long range 
dependencies

▪ No vanishing and exploding 
gradient problem

▪ Fewer training steps needed

▪ No recurrence enables parallel 
computation

▪ Fixed and limited sequence 
length -> context fragmentation

▪ Pretraining heavily exploited

▪ Multitask models
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Transformer-XL

▪ Learning dependency beyond a fixed length without disrupting temporal coherence

▪ Segment-level recurrence mechanism

▪ Hidden state sequence cashed and reused as an extended context

▪ Novel (relative) positional encoding scheme

▪ Resolves the context fragmentation problem

▪ Faster evaluation

▪ Learns longer dependency (Relative Effective Context Length)

▪ 80% longer than RRNs

▪ 450% longer than vanilla Transformers Dai et al., 2019

https://arxiv.org/abs/1901.02860
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Transformers

Encoder Decoder

BERT GPT
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Encoder-only transformers for NLP 

▪ BERT family
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BERT

▪ Pre-training of Deep Bidirectional Transformers for Language Understanding

▪ Pre-train to understand the language and context (on a large amount of data)

▪ Fine-tune on a specific task (on a smaller amount of data)

Devlin et al., 2019

https://arxiv.org/abs/1810.04805
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BERT input representation

▪ Token embeddings: WordPiece embeddings (30.000 token vocabulary)

▪ Sequence length: 512

▪ [CLS] special classification token

▪ [SEP] separates sentences
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BERT pre-training

▪ Unsupervised pre-training

▪ Two pre-training tasks

▪ Trained simultaneously

▪ Task #1: Masked LM

▪ Mask a percentage of input tokens at random

▪ 15% (80% [MASK], 10% random, 10% unchanged)

▪ Predict their values

▪ Task #2: Next sentence prediction

▪ Choose sentences A and B

▪ 50% of the time B IsNext, 50% NotNext

▪ Large corpora for pre-training

▪ BooksCorpus (800M words)

▪ English Wikipedia (2,500M words)



Deep Learning – Transformers and NLP 31

BERT fine-tuning

▪ Supervised fine-tuning

▪ Fine-tune all parameters end-to-end, fast

▪ Input: Sentence A and sentence B from pre-
training are analogous to:

▪ sentence pairs in paraphrasing

▪ hypothesis-premise pairs in entailment

▪ question-passage pairs in question answering

▪ sequence tagging

▪ Output: 

▪ [CLS] representation -> output layer for 
classification

▪ Entailment

▪ Sentiment analysis

▪ token representations-> output layer for 
token-level tasks

▪ Sequence tagging

▪ Question answering
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Using BERT

[image from https://mccormickml.com/]

BERT embeddingsBERT fine-tunning

[image from http://jalammar.github.io/illustrated-bert/]
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BERT - Experimental results

▪ Beyond SOTA on 
multiple tasks!

SQuAD v1.1
SWAG
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RoBERTa

▪ RoBERTa: A Robustly Optimized BERT Pre-training Approach

▪ Replication study of BERT pre-training

▪ Fine-tuning the original BERT model along 
with data and inputs manipulation

▪ Larger training datasets

▪ Longer training on longer sentences

▪ Large batches

▪ Dynamic masking

▪ No NSP loss

Liu et al., 2019

https://arxiv.org/abs/1907.11692
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ALBERT

▪ ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

▪ Further improvements of BERT

▪ Factorized Embedding 
Parametrization

▪ Cross-Layer Parameter Sharing

▪ Sentence Order Prediction (SOP) 
Objective

Lan et al., 2020

https://arxiv.org/abs/1909.11942
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DeBERTa

▪ DeBERTa: Decoding-enhanced BERT with Disentangled Attention

▪ Disentangled attention mechanism: a two-vector approach

▪ Enhanced mask decoder for absolute word positions

▪ Scale invariant fine-tuning (SiFT)

▪ Virtual adversarial training method is used for fine-tuning

He et al., 2021

https://arxiv.org/abs/2006.03654
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BERT examples

▪ Masked language modelling

https://demo.allennlp.org

Devlin et al., 2019

https://arxiv.org/abs/1810.04805
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*BERT* examples

▪ Coreference resolution

▪ SpanBERT

▪ Higher-order Coreference Resolution with Coarse-to-fine Inference

https://demo.allennlp.org

Lee et al., 2019

https://arxiv.org/abs/1907.10529
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*BERT* examples

▪ Semantic Role Labelling

▪ Simple BERT Models for Relation Extraction and Semantic Role Labeling

https://demo.allennlp.org

Shi et al., 2019

https://arxiv.org/abs/1904.05255
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*BERT* examples

▪ Visual Question Answering

▪ ViLBERT: Pretraining Task-Agnostic Visiolinguistic
Representations for Vision-and-Language Tasks

https://demo.allennlp.org

Lu et al., 2019

https://arxiv.org/abs/1908.02265
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Resources

https://huggingface.co

https://www.clarin.si
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Sentiment analysis - BERT

Ni najboljša ampak za ceno je solidna, usb priključek 
je malo čudn ker zazna samo usb-2.0 in nima najbolj 
čvrstega stojala.

Kamero uporabljam za šolske potrebe in sem 
popolnoma zadovoljna. Poceni, enostavna uporaba, 
dela popolnoma vredu.

Slika ni preveč dobra, je pa ok glede na ceno.

Odlična kamera za ta denar. postaviš, vtakneš v usb
režo prižgeš računalnik in vse dela kot mora. Slika 
odlična zvok tudi. Nekaj težav ko sem jo priklopil 
med delovanjem računalnika. Reboot je vse rešil.

Slika ok glede na denar. Mikrofon neuporaben. 
Drzalo neuporabno.

V specifikaciji piše, da dela tudi na USB 2.0, a se 
izkaže, da je nestabilna, ker odvzame preveč 
elektrike in je potrebno za dobro delovanje kupiti 
vmes usb hub z dodatnim napajanjem.

Na kameri mikrofon prekinja. zato jo bom 
reklamiral.

V slabi svetlobi bolj slaba slika, drugač pa za silo v 
redu kamera.

Za podobno ceno so tudi externe webkamere s HD 
tehniko

poceni web kamera, win10 ti sam namesti gonilnike. 
slika je obupna, vendar zadostljiva ce rabis zacasno
kamero hitro. Slaba kvaliteta barvni spekter kamere na nuli kk

pride malo vec svetlobe zravn vglavnem skoda 15ih 
eurov

Priklopljena na stacionarni računalnik, deluje super 
+ vgrajen mikrofon. Idealna kombinacija za 
nadgradnjo računalnika.
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Encoder-decoder transformers for NLP

▪ T5 family
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T5 - Text-To-Text Transfer Transformer

▪ Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

▪ Reframing all NLP tasks into a unified text-to-text-format 

▪ task-specific (text) prefix to the original input sequence

▪ Use the same model, loss function, and hyperparameters on any NLP task

▪ machine translation, document summarization, question answering, classification,…

▪ fine tunning for a specific downstream task

▪ Model roughly equivalent to the original Transformer (encoder+decoder)

▪ A Large Pre-training Dataset (750 GB)

▪ C4 - Colossal Clean 
Crawled Corpus

▪ Great SOTA analysis

▪ Insights + Scale = 
State-of-the-Art

Raffel et al., 2019

https://arxiv.org/abs/1910.10683v3
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T5 experiments

Raffel et al., 2019

https://arxiv.org/abs/1910.10683v3
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T5 experimental results
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LLM as knowledge base

▪ How Much Knowledge Can You Pack Into the Parameters of a Language Model?

▪ Fine-tuning pre-trained models to answer questions without access to any 
external context or knowledge

▪ Language model as knowledge base

▪ knowledge built by pre-training on unstructured 
and unlabelled text data

▪ huge corpuses -> „world knowledge“

▪ retrieve information using informal natural language 
queries

Roberts et al., 2020

https://arxiv.org/abs/2002.08910v4
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Decoder-only transformers for NLP

▪ GPT family
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GPT - Generative Pre-trained Transformer

▪ Improving Language Understanding by Generative Pre-Training

▪ Transformer decoder only

▪ Autoregressive next word prediction LM

▪ Unsupervised generative pre-training 
+ supervised discriminative fine-tuning Radford et al., 2018

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
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GPT-1 results Radford et al., 2018

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
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GPT-2

▪ Language Models are Unsupervised Multitask Learners

▪ BPE tokenisation

▪ Task conditioning

▪ Zero Shot Learning and Zero Short Task Transfer

▪ Huge dataset: WebText (40GB, 8M web pages)

▪ More data, larger models, better results

Radford et al., 2019

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
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GPT-2 performance
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GPT-2 text completion examples https://bellard.org/textsynth/
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GPT-3

▪ Language Models are Few-Shot Learners

▪ In context learning

▪ No fine-tuning

▪ Zero-shot, one-shot and few-shot learning

▪ Architecture similar to GPT-2, however larger models (100x more parameters)

▪ Even more data, more parameters!

▪ More applications Brown et al., 2020

https://arxiv.org/abs/2005.14165
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GPT-3 performance

Bigger is better!
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GPT-3 results
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GPT-3 results

▪ More is 
better!
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GPT-3 examples
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GPT-3 examples

[Kevin Lacker's blog]
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InstructGPT

▪ Training language models to follow instructions with human feedback

▪ GPT-3 fine-tuned specifically for following instructions given in natural language

▪ Aligning GPT with user intent by fine-tunning with human feedback

▪ Human evaluators strongly prefer InstructGPT over the GPT-baseline

▪ GPT-3+

1. Supervised fine-tunning (SFT)

▪ fine-tunning GPT-3 on labeler demonstrations

▪ model selection based on the RM score on 
the validation set

2. Reward-model training (RM)

▪ train a model to take in a prompt and response, 
and output a scalar reward

▪ only 6 B params

3. Reinforcement learning on this reward model

▪ via proximal policy optimization (PPO)

▪ mixing pretraining gradients into PPO gradients

Ouyang et al., 2022

https://arxiv.org/abs/2203.02155v1
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InstructGPT
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InstructGPT examples



Deep Learning – Transformers and NLP 63

InstructGPT results
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InstructGPT main points

▪ The main findings in the paper:

▪ Labelers significantly prefer InstructGPT outputs over outputs from GPT-3

▪ Even using 100x smaller model

▪ InstructGPT models show improvements in truthfulness over GPT-3

▪ InstructGPT shows small improvements in toxicity over GPT-3, but not bias

▪ We can minimize performance regressions on public NLP datasets by modifying our 
RLHF fine-tuning procedure

▪ Our models generalize to the preferences of “held-out” labellers that did not produce 
any training data

▪ at about the same rate as our training labellers

▪ Public NLP datasets are not reflective of how our language models are used

▪ InstructGPT models show promising generalization to instructions outside of the RLHF 
fine-tuning distribution.

▪ follow instructions for summarizing code, answer questions about code etc.

▪ InstructGPT still makes simple mistakes

▪ fail to follow instructions, make up facts, give long hedging answers to simple questions…
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Alignment problem

▪ Alignment with empirical feedback loop

▪ RLHF – Reinforcement learning with human feedback

▪ The cost of increasing model alignment is modest relative to pretraining

▪ Pretraining 175B GPT-3: 3.640 petaflops/s-days

▪ Training 175B SFT: 4.9 petaflops/s-days

▪ Training 175B PPO-ptx: 60 petaflops/s-days

▪ => alignment more effective than training larger models

▪ InstructGPT generalizes ‘following instructions’ to settings beyond supervised 
ones

▪ on non-English texts and code-related tasks

▪ Most of the performance degradations introduced by fine-tuning were mitigated

▪ no incentive not to align

▪ Grounding for alignment research in AI systems

Ouyang et al., 2022

https://arxiv.org/abs/2203.02155v1
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ChatGPT [https://openai.com/blog/chatgpt]
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InstructGPT vs. ChatGPT

▪ Both variants of GPT-3

▪ Same architecture and parameter count

▪ Fine-tuning differences

▪ InstructGPT: fine-tuned on instruction-based data

▪ ChatGPT: fine-tuned on conversational data

▪ Task focus

▪ InstructGPT: following instructions, step-by-step guidance

▪ ChatGPT: general conversation, contextually accurate responses

▪ Application

▪ InstructGPT: instruction-based tasks and applications

▪ ChatGPT: open-ended conversations, conversational applications

▪ Typical example task:

▪ InstructGPT: Recipe generation: Providing instructions to create a specific dish, e.g., 
"Generate a step-by-step recipe for making a vegetarian lasagna."

▪ ChatGPT: Casual conversation: Engaging in a dialogue on a general topic, e.g., "Tell 
me your thoughts on the impact of artificial intelligence on society."
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ChatGPT
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Best use-cases for ChatGPT

▪ Customer support: AI-powered chatbots

▪ Handle FAQs, reduce response time

▪ Virtual assistants: multi-platform support

▪ Smartphones, smart speakers, messaging apps

▪ Content generation: writing assistance

▪ Blog posts, articles, social media updates

▪ Language translation: cross-language communication

▪ Break language barriers, enable global interaction

▪ Creative storytelling: idea generation

▪ Writers, game designers, brainstorming

▪ Tutoring and learning: AI-based tutors

▪ Subject-specific help, question answering

▪ Code generation: programming assistance

▪ Code snippets, solution suggestions, code improvements

▪ Sentiment analysis: understanding opinions and emotions

▪ Analyze user-generated content, inform business decisions
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Great factual knowledge
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Very good answers
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Seemingly good, however wrong answers
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Inaccuracies
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Suggesting titles
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Improving CV
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Translation
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Translation
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Translation
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Translation in different chats
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Programming aid
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Programming aid
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Programming aid
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Counting
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Math

55

19.6666666667

194.914

19.4914
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Math

351.363



Deep Learning – Transformers and NLP 86

Commonsense reasoning
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Commonsense reasoning
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Commonsense reasoning
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Biases
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Evolutionary tree of modern LLMs

Yang et al., 2023

https://arxiv.org/abs/2304.13712v2
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Yang et al., 2023Power of LLMs in practice

https://arxiv.org/abs/2304.13712v2
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Power of LLMs in practice Yang et al., 2023

https://arxiv.org/abs/2304.13712v2
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Power of LLMs in practice Yang et al., 2023

https://arxiv.org/abs/2304.13712v2
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LLMs considerations

▪ Efficiency

▪ Cost

▪ Latency

▪ Parameter efficient tuning

▪ Trustworthiness

▪ Robustness and Calibration

▪ Fairness and Bias

▪ Spurious Biases

▪ Safety challenges

▪ Hallucinations

▪ Harmful content

▪ Privacy

Yang et al., 2023

https://arxiv.org/abs/2304.13712v2
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Emergence of new abilities

▪ An ability is emergent if it is not present in smaller models but is present in 
larger models.

▪ More is Different

▪ Few-Shot Prompted Tasks

▪ Augmented Prompting Strategies

▪ Multi-step reasoning

▪ Instruction following

▪ Program execution

▪ Model calibration

▪ Possible explanations

▪ Few compelling explanations

▪ Multi-step reasoning of l steps ->

depth of the model of at least O(l)?

▪ More parameters and more training

enable better memorization

▪ ?

Wei et al., 2023

https://arxiv.org/abs/2206.07682v2
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Emergence of new abilities Wei et al., 2023

https://arxiv.org/abs/2206.07682v2
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Other Transformers-based applications

▪ Speech recognition

▪ Music transformer

▪ (Computer vision!)
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Speech recognition

▪ Exploring Transformers for Large-Scale Speech Recognition

▪ PreNorm Layer normalisation

▪ VGG net as the encoding layer

▪ Offline and streaming scenario

▪ Transformer-XL

▪ 65,000 hours of training data

Lu et al., 2020

https://arxiv.org/abs/2005.09684
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Whisper

▪ Robust Speech Recognition via Large-Scale Weak Supervision

▪ Trained on 680.000 hours of multilingual and multitask supervised data collected 
from the web

▪ 117,000 hours cover 96 other languages

▪ 125,000hours of X→en translation data

▪ audio that is paired with transcripts on the Internet, very diverse

▪ Improved robustness to accents, background noise and technical language.

▪ Enables transcription in multiple languages and translation from those languages 
into English

▪ End-to-end approach, implemented as an encoder-decoder Transformer

▪ Input audio is split into 30-second chunks, converted into a log-Mel spectrogram, 
and then passed into an encoder

▪ A decoder is trained to predict the corresponding text caption

▪ also special tokens for other tasks (language identification, to-English translation,…)

▪ No need for dataset-specific fine-tuning

Radford et al., 2022

https://cdn.openai.com/papers/whisper.pdf
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Whisper
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Whisper performance

▪ Competitive
performance

Radford et al., 2022

https://cdn.openai.com/papers/whisper.pdf
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Whisper scaling

▪ Larger is better

Radford et al., 2022

https://cdn.openai.com/papers/whisper.pdf
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Whisper Slovenian
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Whisper examples

Radford et al., 2022

[https://openai.com/research/whisper]

https://cdn.openai.com/papers/whisper.pdf
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Music transformer

▪ Music Transformer: Generating Music with Long-Term Structure

▪ Transformer with relative attention

Huang et al., 2018

https://arxiv.org/abs/1809.04281
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