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Sequential data

Artificial intelligence is a research field dealing with the
development of algorithms and systems for solving tasks
that require intelligence to be solved.

Deep learning is a type of machine learning that uses deep
artificial neural networks for modelling acquired knowledge.
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CNN-based approach

▪ Sea level forecasting

▪ Stack a window of sequential data into a fixed-
length tensor and use ANN/CNN

▪ Predict a fixed number of parameters

Žust et. al, 2021

https://prints.vicos.si/publications/files/386
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CNN-based approach

▪ Ski jump style judging

▪ Faster R-CNN for detection of skier
▪ CPM for detection of body parts (+skis)
▪ Shallow deep CNN for estimating grade

▪ (13+4)×T data

Štepec & Skočaj et. al, 2022

https://openaccess.thecvf.com/content/WACV2022W/CV4WS/papers/Stepec_Video-Based_Ski_Jump_Style_Scoring_From_Pose_Trajectory_WACVW_2022_paper.pdf
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Naive approach

▪ Task: predict the next word.

▪ Deep learning is a type of machine learning.

▪ Naive approach 1: Use the fixed window

▪ Deep learning is a type of machine learning.

▪ Too small, rigid, the important information might be at the beggining of the 
sequence: Deep learning is a not so new technique, which has been 
frequently applied lately. It is a type of machine learning.

▪ Naive approach 2: Bag of words

▪ Count the number of the individual words

▪ Counts don‘t preserve the order:

▪ Luka Dončić played extremely good tonight, not as bad as LeBron.

▪ Luka Dončić played extremely bad tonight, not as good as LeBron.

▪ Requirements:

▪ Sequence, variable length of sequences

▪ Time (order) dependency, long term dependencies
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Recurrent Neural Network

RNN 
cell

input

output

internal state
At every
time step:



Deep Learning – Deep learning for sequential data 7

Recurrent Neural Network
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One-to-many RNN

image

caption

▪ E.g., image captioning, text generation, music generation, etc.
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Many-to-one RNN

text

class

▪ E.g., text classification, action recognition
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Many-to-many RNN

text

labels

▪ E.g., named entity recognition, video segmentation
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Many-to-many (many-to-one + one-tomany) RNN

English

Slovene

▪ E.g., machine translation, sequence to sequence
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Multilayer RNN
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Recurrence formula
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Computational graph
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Backpropagation through time

Chen, 2016

Note: y=z

https://arxiv.org/abs/1610.02583v3
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Backpropagation through time
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Truncated backpropagation through time
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Example – character-level language models

▪ Task: generate text

▪ Model the probability distribution of 
the next character in the sequence 
given a sequence of previous 
characters

▪ Toy example:

▪ Vocabulary: {h,e,l,o}

▪ Training sample: „hello“

Karpathy, 2015

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Example – character-level language models

▪ Tolstoy, War and peace Karpathy, 2015

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Example – character-level language models

▪ Shakespeare

Karpathy, 2015

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Example – character-level language models

▪ LaTeX

Karpathy, 2015

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Example – interpreting character-level language models

Karpathy et al., 2016

https://arxiv.org/abs/1506.02078v2
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Backpropagation through time problems

Largest singular value of W:

▪ >1: Exploding gradients

-> gradient clipping

▪ <1: Vanishing gradient

Inherent problem of vanilla
RNN!

Pascanu et.al, 2013

Bengio et al., 1994

https://arxiv.org/abs/1211.5063
https://www.researchgate.net/publication/5583935_Learning_long-term_dependencies_with_gradient_descent_is_difficult
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RNN

▪ Backpropagation through time problem

[Images from:
Christopher Olah, 
Understanding LSTM Networks]
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LSTM

▪ Long short term memory

▪ Additional Cell state

▪ Forget gate

▪ How much to forget the value of
the cell state

▪ Input gate

▪ How much to take into account the
value of the current input

▪ State candidate gate

▪ Update the old cell state

▪ Output gate

▪ Decide what to output

Forget
gate

Input
gate

State c. 
gate

Output
gate

Cell
state

Ct

Hochreiter & Schmidhuber, 1997

https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
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LSTM
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LSTM

▪ Backpropagation through time problem solved
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GRU

▪ Gated Recurrent Units

Cho et al., 2014

Reset
gate

Update
gate

https://arxiv.org/abs/1406.1078
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RNN variants

Jozefowicz et al., 2015 Greff et al., 2015

https://proceedings.mlr.press/v37/jozefowicz15.pdf
http://arxiv.org/abs/1503.04069
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RNN NAS

LSTM cell Zoph & Le, 2017 Discovered cell

https://arxiv.org/abs/1611.01578
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Bidirectional LSTM

▪ BRNN

▪ Two LSTMs

▪ The output depends on both RNNs

▪ Considering context from both directions

▪ The entire sequence is needed

[Images from medium.com]
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Example: sentiment analysis

Nowak & Scherer, 2017

file:///C:/Users/danij/Downloads/LSTM.pdf
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Example: music generation

https://www.youtube.com/watch?v=j60J1cGINX4
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Example: Machine translation

▪ Google’s Neural Machine

Translation system (2016)

Wu et al., 2016

https://arxiv.org/abs/1609.08144v2
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Encoder – decoder architecture

Encoder Decoder

▪ E.g., machine translation, sequence to sequence modelling
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Attention in RNNs

Bahdanau et al., 2015

[Images from:Nir Arbel, 
Attention in RNNs,
https://medium.com]

https://arxiv.org/abs/1409.0473
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Context vectors

Bahdanau et al., 2015

https://arxiv.org/abs/1409.0473


Deep Learning – Deep learning for sequential data 38

Attention in RNNs

Bahdanau et al., 2015

https://arxiv.org/abs/1409.0473
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Computing the context vectors

Bahdanau et al., 2015

https://arxiv.org/abs/1409.0473
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Example of attention weights

▪ Translation between English and French
Bahdanau et al., 2015

https://arxiv.org/abs/1409.0473
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Attention++

▪ Attention is all you need

▪ Vaswani et.al, NIPS 2017

▪ Transformers!

Vaswani et al., 2017

https://arxiv.org/abs/1706.03762
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