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Perceptron

▪ Rosenblatt, 1957

▪ Binary inputs and output

▪ Weights

▪ Threshold

▪ Bias

▪ Very simple!



Deep Learning – Training neural networks 3

Example: logical functions

▪ NAND gate:

▪ Addition circuit:

▪ Go beyond binary inputs/outputs

▪ Learn weights!
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Sigmoid neurons

▪ Real inputs and outputs from interval [0,1]

▪ Activation function: sigmoid function

▪ output =



Deep Learning – Training neural networks 5

Sigmoid neurons

▪ Small changes in weights and biases causes small change in output

▪ Enables learning!



Deep Learning – Training neural networks 6

Feedfoward neural networks

▪ Network architecture:
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Example: XOR

▪ Not linearly separable function!

▪ Hidden neuron needed:

▪ Activation function: ReLU
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▪ Linearly separable in feature space!
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Example: recognizing digits

▪ MNIST database of handwritten digits

▪ 28x28 pixes (=784 input neurons)

▪ 10 digits

▪ 50.000 training images

▪ 10.000 validation images

▪ 10.000 test images
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Example code: Feedforward

▪ Code from http://neuralnetworksanddeeplearning.com/

or https://github.com/mnielsen/neural-networks-and-deep-learning

▪ or https://github.com/MichalDanielDobrzanski/DeepLearningPython35 (for Python 3)

Nielsen, 2015

http://neuralnetworksanddeeplearning.com/
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/MichalDanielDobrzanski/DeepLearningPython35
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
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Loss function

▪ Given:

for all training images

▪ Loss function:

▪ (mean sqare error – quadratic loss function)

▪ Find weigths w and biases b that for given input x

produce output a that minimizes Loss function C
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Gradient descend

▪ Find minimum of

▪ Change of C:

▪ Gradient of C:

▪ Change v in the opposite

direction of the gradient: 

▪ Algorithm:

▪ Initialize v

▪ Until stopping criterium riched

▪ Apply udate rule

Learning rate



Deep Learning – Training neural networks 12

Gradient descend in neural networks

▪ Loss function

▪ Update rules:

▪ Consider all training samples

▪ Very many parameters
=> computationaly very expensive

▪ Use Stochastic gradient descend instead
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Stochastic gradient descend

▪ Compute gradient only for a subset of m training samples:

▪ Mini-batch:

▪ Approximate gradient: 

▪ Update rules:

▪ Training:

1. Initialize w and b

2. In one epoch of training keep randomly selecting one mini-batch of m samples at a 

time (and train) until all training images are used

3. Repeat for several epochs
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Example code: SGD
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Backpropagation

▪ All we need is gradient of loss function

▪ Rate of change of C wrt. to change in any weigt

▪ Rate of change of C wrt. to change in any bias

▪ How to compute gradient?

▪ Numericaly

▪ Simple, approximate, extremely slow 

▪ Analyticaly for entire C

▪ Fast, exact, nontractable 

▪ Chain individual parts of network

▪ Fast, exact, doable ☺

Backpropagation!
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Backpropagation in computational graph
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Locality of computation

values

gradient
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Gradient backward flow

▪ Addition

▪ Unchanged gradient value travels back

▪ Multiplication

▪ Gradient multiplies with switched values

▪ Maximisation

▪ Gradient routes back through the max. branch

▪ ReLU

▪ Gradient flows back for positive and stops if negative

▪ Branching

▪ Gradients of all branches added
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Notation: w, b

▪ is the weight
from the k-th neuron in the (l-1) layer

to the j-th neuron in the l-th layer

▪ : weigth matrix for the l-th layer

▪ is the bias
of the j-th neuron in the l-th layer

▪ bias vector for the l-th layer

Nielsen, 2015

http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
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Notation: a, z

▪ Activation of the j-the neuron in the l-th level:

▪ Activation vector at the l-th layer:

▪ Weighted input to the j-the neuron
in the l-th level:

▪ Vector of weighted inputs at the l-th layer:
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Assumptions about loss function

▪ Two assumptions about loss function:

1. The loss function C can be written as an average over cost functions Cx for 

individual images x

2. The loss function C can be written as a function of the outputs from the neural 

network
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Main principle

▪ We need the gradient of the Loss function

▪ Two phases:

▪ Forward pass; propagation: the input sample is propagated through the network and
the error at the final layer is obtained

▪ Backward pass; weight update: the error is backpropagated to the individual levels, 
the contribution of the individual neuron to the error is calculated and the weights are 
updated accordingly
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Chain rule
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Learning strategy

▪ To obtain the gradient of the Loss function :

▪ For every neuron in the network calculate the error of this neuron

▪ This error propagates through the network causing the final error

▪ Backpropagate the final error to get all

▪ Obtain all and from
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Derivation of backpropagation
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Equations of backpropagation

▪ BP1: Error in the output layer:

▪ BP2: Error in terms of the error in the next layer:

▪ BP3: Rate of change of the cost wrt. to any bias:

▪ BP4: Rate of change of the cost wrt. to any weight:

Nielsen, 2015

http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
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Backpropagation algorithm

▪ Input x: Set the corresponding activation for the input layer

▪ Feedforward:  For each

compute

▪ Output error : Compute the output error

▪ Backpropagate the error:

For each

compute

▪ Output the gradient:
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Backpropagation and SGD

For a number of epochs

Until all training images are used

Select a mini-batch of training samples

For each training sample in the mini-batch

Input: set the corresponding activation

Feedforward: for each

compute and

Output error: compute

Backpropagation: for each

compute

Gradient descend: for each and update: 
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Example code: Backpropagation
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Backprop summary

BP2

BP4
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Quadratic (L2) loss function

▪ Partial derivatives depend on

▪ In case of sigmoid activation function
and small or large activations -> slow learning!
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Quadratic loss function

▪ In case of linear neurons in the output layer:

▪ Partial derivatives:

▪ Error in the output layer:
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Cross-entropy loss function

▪ For one neuron with sigmoid activation function:

▪ Partial derivatives do not depend on       any more!      

▪ Slow learning problem avoided



Deep Learning – Training neural networks 34

Cross-entropy loss function
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Cross-entropy loss function

▪ For many neurons:

▪ Partial derivatives in the output layer:

▪ Error in the output layer:

▪ Categorical cross-entropy loss:
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Softmax layer

▪ The activation function is defined as:

▪ The activations sum to 1:

=> the activations could be considered as probabilities
the output layer can be considered as a probability distribution

▪ Properties of Softmax:

▪ Monotonic function: increasing      increases  

▪ Any output activation      depends on all the weighted inputs
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Categorical Cross-entropy loss function

▪ Loss function for Softmax output layer:

▪ Partial derivatives in the output layer:

▪ Error in the output layer:
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Categorical Cross-entropy loss function
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Categorical Cross-entropy loss function
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Activation and loss functions

Activation function Loss function

Linear Quadratic

Sigmoid Cross-entropy

Softmax Categorical Cross-entropy



Deep Learning – Training neural networks 41

Activation functions

[https://paperswithcode.com]

https://paperswithcode.com/
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Sigmoid

▪ Continuous values from 0 to 1

▪ Saturated neurons slow down 
learning

▪ Not zero-centered

▪ Not very fast to compute

▪ Continuous values from -1 to 1

▪ Zero-centered

▪ Saturated neurons slow down 
learning

▪ Not very fast to compute

tanh

LeCun et al., 1990

https://proceedings.neurips.cc/paper/1990/file/758874998f5bd0c393da094e1967a72b-Paper.pdf
https://proceedings.neurips.cc/paper/1990/file/758874998f5bd0c393da094e1967a72b-Paper.pdf
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ReLU

▪ Rectified linear unit

▪ Do not saturate for x>0

▪ Computationally very efficient

▪ Faster convergence

▪ Dead neurons for x<0

▪ Not zero-centered

▪ Gaussian Error Linear Unit

▪ Weights inputs by their percentile

▪ Smoother ReLU

▪ Less saturated neurons

▪ Not zero-centered

▪ Often use in Transfromers

GELU

Hendrycks, et al., 2016

https://proceedings.neurips.cc/paper/1990/file/758874998f5bd0c393da094e1967a72b-Paper.pdf
https://arxiv.org/abs/1606.08415
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Leaky ReLU

▪ ReLU with non-zero output for x<0

▪ Slope for x<0 controllable with α

▪ It can be learned in PReLU

▪ Do not saturate

▪ More zero-centered

▪ Very fast to compute

▪ Exponential Linear Unit

▪ More zero-centered

▪ Less saturated neurons

▪ Not very fast to compute

ELU

Clevert et al., 2015

Mass et al., 2013

He et al., 2015

https://proceedings.neurips.cc/paper/1990/file/758874998f5bd0c393da094e1967a72b-Paper.pdf
https://arxiv.org/abs/1511.07289v5
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852v1
https://arxiv.org/abs/1502.01852v1


Deep Learning – Training neural networks 45

SWISH

▪ Learnable parameter β

▪ Can be fixed to 1 →

▪ Sigmoid Linear Unit – SiLU

▪ More zero-centered

▪ Less saturated neurons

▪ Piecewise linear function

▪ Neurons do not saturate

▪ Two sets of parameters

▪ Computationally expensive

Maxout

Goodfellow et al., 2013Elfwing et al., 2017Ramachandran et al., 2017

https://proceedings.neurips.cc/paper/1990/file/758874998f5bd0c393da094e1967a72b-Paper.pdf
https://arxiv.org/abs/1302.4389
https://proceedings.neurips.cc/paper/1990/file/758874998f5bd0c393da094e1967a72b-Paper.pdf
https://arxiv.org/abs/1702.03118
https://proceedings.neurips.cc/paper/1990/file/758874998f5bd0c393da094e1967a72b-Paper.pdf
https://arxiv.org/abs/1710.05941
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Activation functions recap

▪ ReLU usually suffices – the first choice

▪ Do not use sigmoid and tanh in hidden layers, use ReLU instead

▪ Select the activation function in the hidden layers according to the type of the 
neural network:

▪ ReLU for CNNs (or Leaky ReLU, or ELU, etc.)

▪ Sigmoid or tanh for RNNs

▪ GELU for Transformers

▪ Select the activation function in the output layer according to the loss function:

▪ Linear for L2 loss (regression)

▪ Sigmoid for Cross-entropy (binary classification, multilabel classification)

▪ Softmax for Categorical cross-entropy (multiclass classification)

▪ Experiment for the best choice
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▪ Huge number of parameters 
-> danger of overfitting

▪ Use validation set to determine 
overfitting and early stopping

▪ Hold out method

Overfitting

1,000 MNIST training images 50,000 MNIST training images

overfitting

overfitting

early
stopping
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Regularization

▪ How to avoid overfitting:

▪ Increase the number of training images 

▪ Decrease the number of parameters 

▪ Regularization ☺

▪ Regularization:

▪ L2 regularization

▪ L1 regularization

▪ Dropout

▪ Data augmentation
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L2 regularisation

▪ Add the regularisation term in the loss function

▪ L2 norm
Regularisation parameter

Regularisation term
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Weight decay

▪ Loss function:

▪ Partial derivatives:

▪ Update rules:

Weight decay
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Regularised SGD

▪ Regularized learning rules for SGD:

▪ Improved performance!

▪ Overfitting decreased
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L1 regularization

▪ L1 regularization term

▪ Partial derivatives:

▪ Update rule:

▪ Concentrate on relatively small number of high-importance connections

Shrinking term
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Dropout

▪ Randomly (and temporarily) delete half 
(or p) hidden neurons in the network

▪ Then restore the neurons and repeat the 
process

▪ Halve the weights when running the full 
network in test time

▪ Or double the weights during learning

▪ Ensemble learning: training multiple 
networks and averaging the results

▪ Reduces complex co-adaptations of 
neurons

▪ Smaller models harder to overfit

▪ Usually significantly improves the results
Srivastava et al., 2014

https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Data augmentation

▪ Use more data! ▪ Synthetically generate new data

▪ Apply different kinds of transformations: 
translations, rotations, elastic distortions, 
appearance modifications (intensity, blur)

▪ Operations should reflect real-world 
variation
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Data preprocessing

▪ Curate the dataset

▪ Identify/deal with missing values

▪ Identify/deal with outliers

▪ Data cleaning

▪ Data engineering

▪ Trash in – trash out

▪ Data reduction

▪ Data selection

▪ Dimensionality reduction

▪ Data normalisation

▪ Data scaling

▪ Mean-centering

▪ Transforming to unit variance

▪ Same on train and test data!

Tlamelo et al., 2021

https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://journalofbigdata.springeropen.com/counter/pdf/10.1186/s40537-021-00516-9.pdf
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Weight initialization

▪ Ad-hoc normalization

▪ Initialize weights with N(0,1)

▪ Variance is growing with nin

▪ Many large z
=> many saturated neurons

▪ Slow learning

▪ Better initialization

▪ Normalize variance with 

▪ Initialize weights with N(0,1/nin)

▪ Total variance is limited

▪ Faster learning! 

▪ In case of ReLU:

▪ ReLU halves the variance

▪ Init with N( 0, 1/(nin /2) )

Glorot & Bengio, 2010

He et al., 2015

https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/1502.01852v1
https://arxiv.org/abs/1502.01852v1
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Batch normalisation

▪ Reducing internal covariate shift

▪ Normalising (whitening) layer inputs for each training mini-batch

▪ Normalising with per-dimension mean and variance

▪ Speeds up learning

▪ Improves the gradient flow

▪ Regularisation

▪ Allows

▪ Using higher learning rates

▪ Less careful initialisation

▪ Less dropout

Ioffe and Szegedy, 2015

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
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Parameter-update optimizers

▪ Different schemes for updating the weights

▪ Gradient descend

▪ Momentum update

▪ AdaGrad update

▪ RMSProp update

▪ Adam update

▪ Learning rate decay

Image credit: Alec Radford
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Gradient descend

▪ Vanilla gradient descend can be very inefficient

▪ Take into account different slopes in different dimensions

Video credit to Lili Jiang: 
https://github.com/lilipads/gradient_descent_viz
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Momentum update

▪ Accumulate speed in the 
individual dimensions

▪ Cancels the oscillation in steep 
dimensions

▪ Builds up speed in shallow 
dimensions

▪ Faster convergence

▪ It may avoid local minima

Video credit to Lili Jiang: https://github.com/lilipads/gradient_descent_viz
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AdaGrad and RMSProp updates

▪ Different learning rates for different dimensions

▪ Scaling gradient in the individual dimensions

▪ Normalising the changes with the accumulated magnitudes of changes in the 
individual dimensions

▪ AdaGrad:

▪ RMSProp:

Duchi et al., 2011

Tieleman and Hinton,  2011
Video credit to Lili Jiang: 
https://github.com/lilipads/gradient_descent_viz

https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
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Adam update

▪ Considering both ideas:

▪ Keeping momentum 

▪ Adaptive learning rate

▪ ADAptive Moment estimation

▪ Usually works fine

▪ The default choice Kingma and Ba, 2014

Video credit to Lili Jiang: 
https://github.com/lilipa
ds/gradient_descent_viz

https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
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Parameter-update optimizers

Image credit: Y. LeCun
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Learning rate decay

▪ Start with a large learning rate

▪ Escape spurious local minima 

▪ Suppresses the network from memorizing noisy data

▪ and decay it multiple times

▪ Refine the solution and avoid oscillation

▪ Improves the learning of complex patterns

You et.al, 2019

▪ Learning rate schedule:

▪ Step decay

▪ Linear decay

▪ Exponential decay

▪ Inverse

▪ Inverse sqrt

https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/abs/1908.01878v2
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Setting up the network

▪ Set up the network

▪ Get any non-trivial learning

▪ Even on a smaller problem
to speed up the process

▪ Can overfit to training data

▪ Then scale up the data

▪ Monitor progress

▪ Set up reasonable η

▪ You may define learning 
rate schedule

▪ Define regularization param.

▪ Start with λ=0, increase it

▪ Use early stopping

▪ To decrease number of epochs

▪ Cross-validate

▪ Automate the process of determining parameters
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Hyperparameter optimisation

▪ Cross-validation of multiple parameters

▪ Coarse to fine cross-validation

▪ First for a few epochs, coarse search

▪ Then for more epochs, finer search

▪ Automated parameter sampling

▪ Grid search

▪ Random sampling of parameters

▪ Sample in log space

▪ Run multiple validations simultaneously

▪ Actively observe the learning progress

▪ visualise the loss curve, observe the results

▪ Hyperparameters to optimize:

▪ Network architecture (architecture, number of layers, kernel sizes, loss function, etc.)

▪ Learning rate, decay schedule, optimiser

▪ Regularisation parameters (L2, dropout)

▪ Automated parameter search - NAS

Bertrand, 2019

https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://pastel.archives-ouvertes.fr/tel-02089414/document
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