Deep Learning

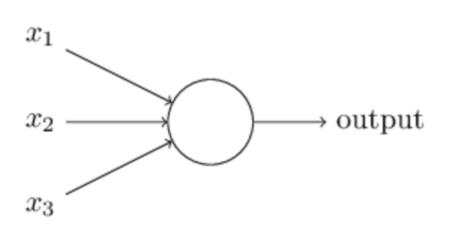
Training neural networks

Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science

Academic year: 2022/23

Perceptron

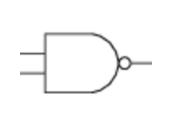
- Rosenblatt, 1957
- Binary inputs and output
- Weights
- Threshold
- Bias
- Very simple!

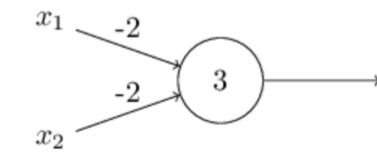


$$egin{aligned} ext{output} &= egin{cases} 0 & ext{if } \sum_j w_j x_j \leq ext{ threshold} \ 1 & ext{if } \sum_j w_j x_j > ext{ threshold} \ 0 & ext{if } w \cdot x + b \leq 0 \ 1 & ext{if } w \cdot x + b > 0 \end{aligned}$$

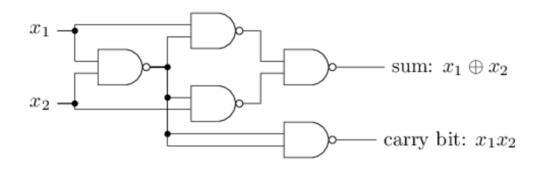
Example: logical functions

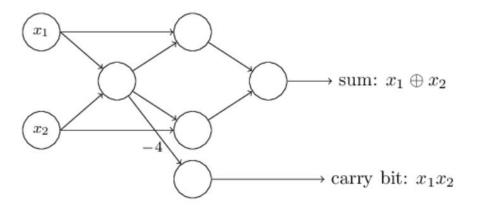
NAND gate:





• Addition circuit:

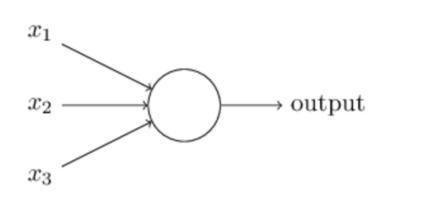




- Go beyond binary inputs/outputs
- Learn weights!

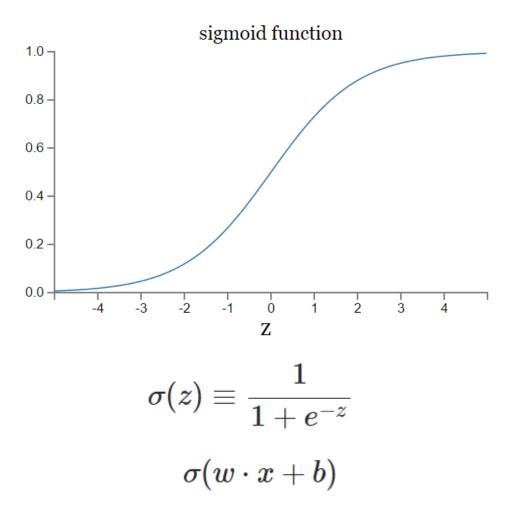
Sigmoid neurons

Real inputs and outputs from interval [0,1]



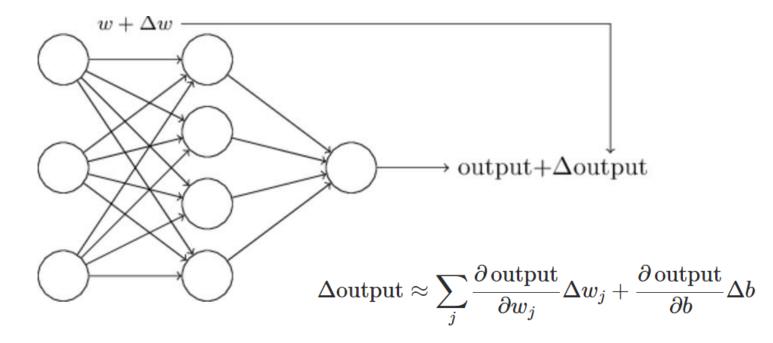
Activation function: sigmoid function

• output =
$$\frac{1}{1 + \exp(-\sum_j w_j x_j - b)}$$



Sigmoid neurons

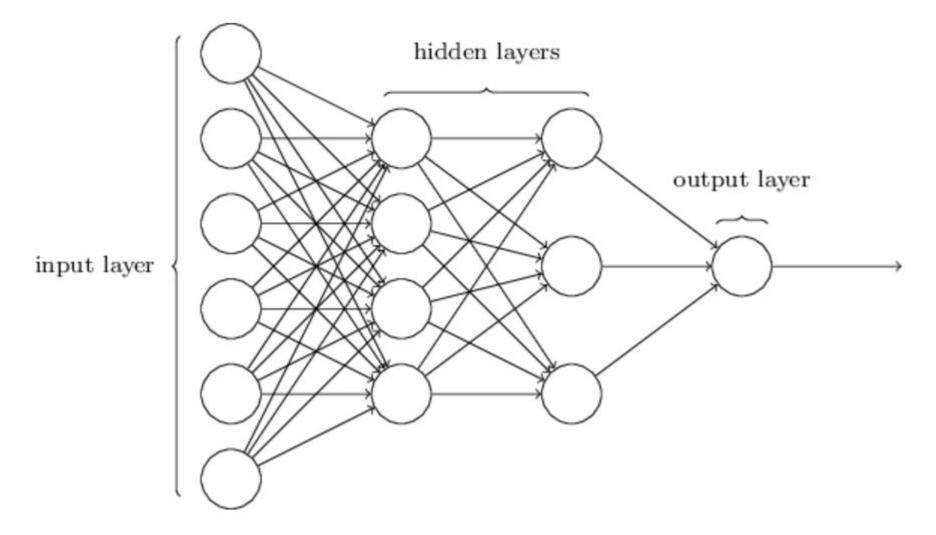
Small changes in weights and biases causes small change in output



Enables learning!

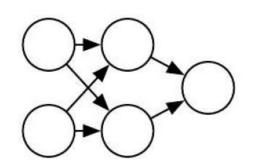
Feedfoward neural networks

Network architecture:

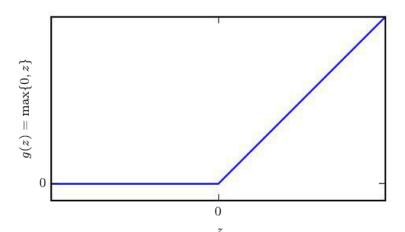


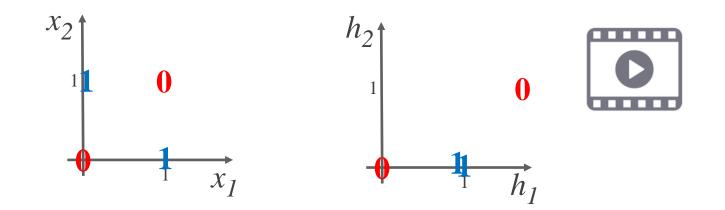
Example: XOR

- Not linearly separable function!
- Hidden neuron needed:



Activation function: ReLU





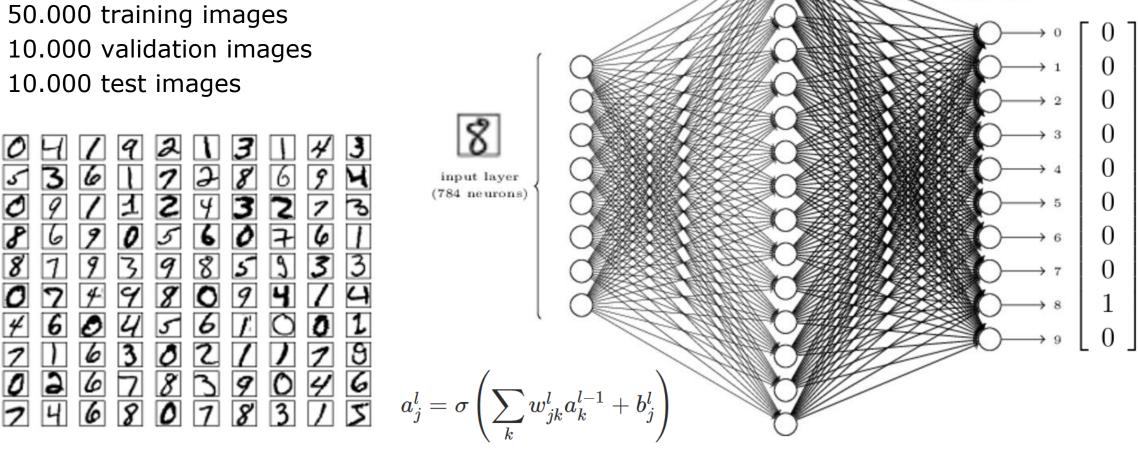
Linearly separable in feature space!

$$\begin{split} h &= f^{(1)}(x; w^{(1)}, b^{(1)}) = max(0, w^{(1)} + b^{(1)}) \\ a &= f^{(2)}(f^{(1)}(x)) = f^{(2)}(h; w^{(2)}, b^{(2)}) = \\ &= w^{(2)}max(0, w^{(1)} + b^{(1)}) + b^{(2)} \end{split}$$

$$w^{(1)} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad b^{(1)} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad w^{(2)} = \begin{bmatrix} 1 & -2 \end{bmatrix} \quad b^{(2)} = 0$$

Example: recognizing digits

- MNIST database of handwritten digits
 - 28x28 pixes (=784 input neurons)
 - 10 digits
 - 50.000 training images
 - 10.000 validation images
 - 10.000 test images



hidden layer (n = 15 neurons)

output layer

Example code: Feedforward

 Code from <u>http://neuralnetworksanddeeplearning.com/</u> or <u>https://github.com/mnielsen/neural-networks-and-deep-learning</u>

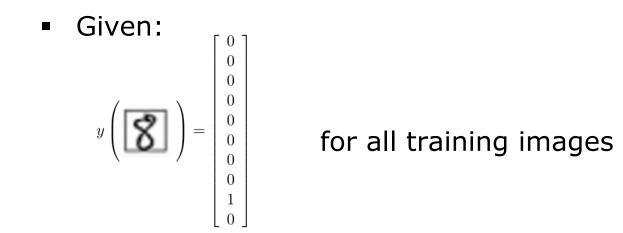
<u>Nielsen, 2015</u>

Out[57]: 7

• or https://github.com/MichalDanielDobrzanski/DeepLearningPython35 (for Python 3)

```
net = network.Network([784, 30, 10])
class Network(object):
                                                   net.SGD(training_data, 5, 10, 3.0, test_data=test_data)
                                                                                In [55]: x,y=test data[0]
    def __init__(self, sizes):
        self.num layers = len(sizes)
                                                                                In [56]: net.feedforward(x)
        self.sizes = sizes
                                                                                Out[56]:
        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
                                                                                array([[ 1.83408119e-03],
        self.weights = [np.random.randn(y, x)
                                                                                          5.94472468e-08],
                        for x, y in zip(sizes[:-1], sizes[1:])]
                                                                                          1.84785949e-03],
                                                                                          6.85718810e-04],
   def feedforward(self, a):
                                                                                          1.41399919e-05],
       for b, w in zip(self.biases, self.weights):
                                                                                          5.40491233e-06],
           a = sigmoid(np.dot(w, a)+b)
                                                                                          4.74332685e-09],
       return a
                                                                                          9.97920007e-01],
                                                                                          8.19370561e-05],
                                                                                          6.65086583e-05]])
def sigmoid(z):
    return 1.0/(1.0+np.exp(-z))
                                                                                In [57]: y
```

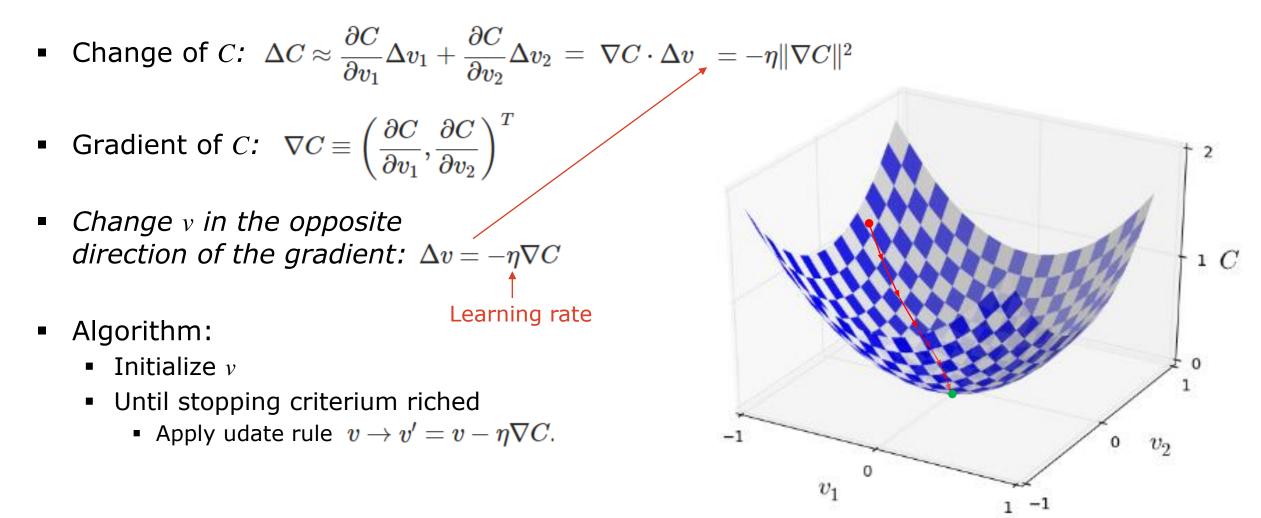
Loss function



- Loss function: $C(w,b)\equiv rac{1}{2n}\sum_x \|y(x)-a\|^2$
 - (mean sqare error quadratic loss function)
- Find weigths w and biases b that for given input x produce output a that minimizes Loss function C

Gradient descend

• Find minimum of $C(v_1, v_2)$

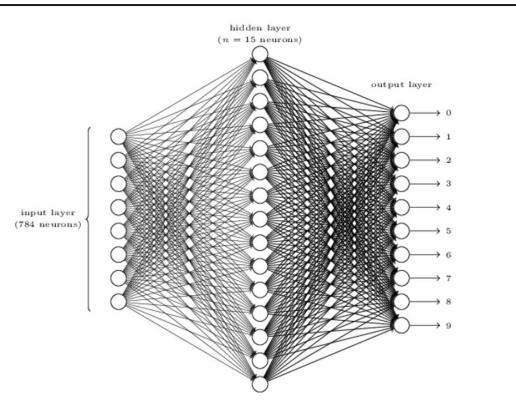


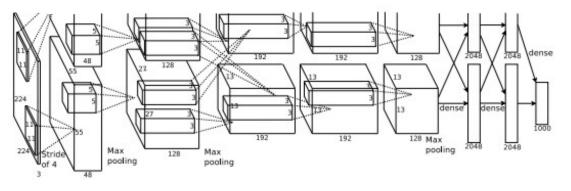
Gradient descend in neural networks

- Loss function C(w, b)
- Update rules:

$$egin{aligned} w_k & o w_k' = w_k - \eta rac{\partial C}{\partial w_k} \ b_l & o b_l' = b_l - \eta rac{\partial C}{\partial b_l} \end{aligned}$$

- Consider all training samples
- Very many parameters
 => computationaly very expensive
- Use Stochastic gradient descend instead





Stochastic gradient descend

- Compute gradient only for a subset of *m* training samples:
 - Mini-batch: X_1, X_2, \ldots, X_m

• Approximate gradient:
$$\frac{\sum_{j=1}^m \nabla C_{X_j}}{m} \approx \frac{\sum_x \nabla C_x}{n} = \nabla C$$
 $\nabla C \approx \frac{1}{m} \sum_{j=1}^m \nabla C_{X_j}$

• Update rules:

$$egin{aligned} w_k &
ightarrow w_k' = w_k - rac{\eta}{m} \sum_j rac{\partial C_{X_j}}{\partial w_k} \ b_l &
ightarrow b_l' = b_l - rac{\eta}{m} \sum_j rac{\partial C_{X_j}}{\partial b_l}, \end{aligned}$$

- Training:
 - 1. Initialize *w* and *b*
 - 2. In one *epoch* of training keep randomly selecting one mini-batch of *m* samples at a time (and train) until all training images are used
 - 3. Repeat for several epochs

Example code: SGD

```
def SGD(self, training data, epochs, mini batch size, eta):
     n = len(training data)
     for j in xrange(epochs):
         random.shuffle(training data)
         mini batches = [
              training data[k:k+mini batch size]
              for k in xrange(0, n, mini_batch_size)]
         for mini batch in mini batches:
              self.update mini batch(mini_batch, eta)
def update mini batch(self, mini batch, eta):
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla w = [np.zeros(w.shape) for w in self.weights]
    for x, y in mini batch:
         delta nabla b, delta nabla w = self.backprop(x, y)
         nabla b = [nb+dnb for nb, dnb in zip(nabla b, delta nabla b)]
         nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
                                                                                w_k 	o w_k' = w_k - rac{\eta}{m} \sum_i rac{\partial C_{X_j}}{\partial w_k}
    self.weights = [w-(eta/len(mini_batch))*nw
                      for w, nw in zip(self.weights, nabla w)]
    self.biases = [b-(eta/len(mini_batch))*nb
                                                                                 b_l 	o b_l' = b_l - rac{\eta}{m} {\sum_i} rac{\partial C_{X_j}}{\partial b_l},
                     for b, nb in zip(self.biases, nabla b)]
```

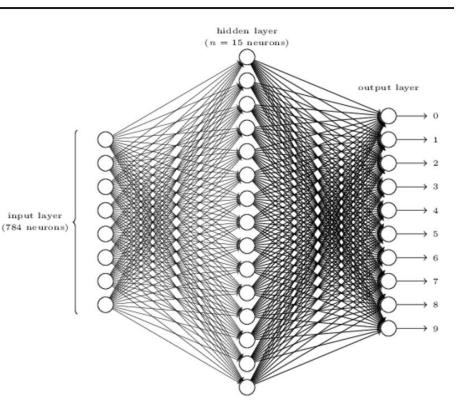
Backpropagation

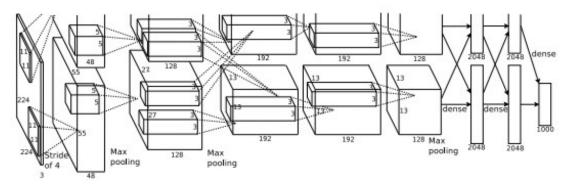
- All we need is gradient of loss function ∇C
 - Rate of change of *C* wrt. to change in any weigt
 - Rate of change of *C* wrt. to change in any bias

$$rac{\partial C}{\partial b_j^l} \qquad \qquad rac{\partial C}{\partial w_{jk}^l}$$

- How to compute gradient?
 - Numericaly
 - Simple, approximate, extremely slow $\ensuremath{\textcircled{\otimes}}$
 - Analyticaly for entire C
 - Fast, exact, nontractable ⊗
 - Chain individual parts of network
 - Fast, exact, doable ☺

Backpropagation!

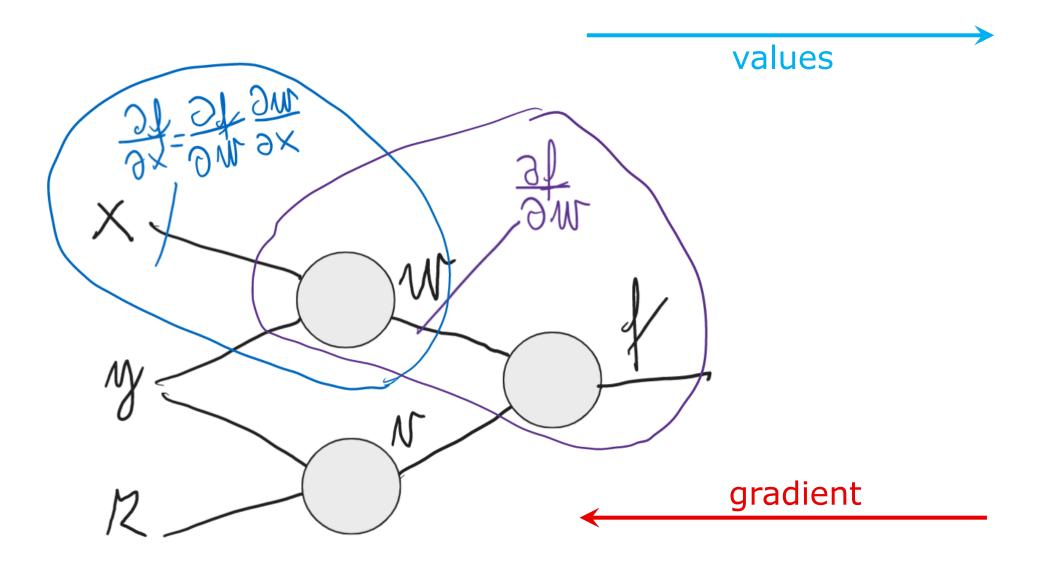




Backpropagation in computational graph

f(x, y, r) = (x + ny)(y - rz) = NVN01 = M-2=1 21 = 18-2+×+19 = 28 = ×+219-12=6 $W = \times + N$ $\frac{\partial W}{\partial X} = 1$ $\frac{\partial V}{\partial X} = 1$ FWN D1/ = - (X+1) = -5 1= 100 0 = 1 = 1 0 W = 1 W + NYZ 01-1 NA = 1.1 + 5.1 = 6JA = W=5 R^{1} N=M=R <u> 3</u> 1 $\frac{\partial V}{\partial p} = -1 = \frac{\partial F}{\partial p} = \frac{\partial F}{\partial$

Locality of computation



Gradient backward flow

- Addition
 - Unchanged gradient value travels back

$$f(x,y) = x + y$$
 $\frac{\partial f}{\partial x} = 1$ $\frac{\partial f}{\partial y} = 1$

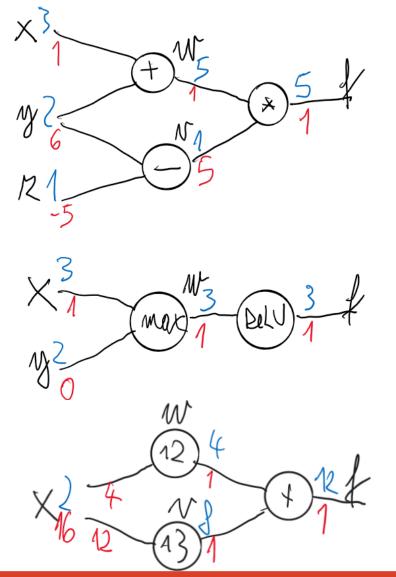
- Multiplication
 - Gradient multiplies with switched values

$$f(x,y) = xy$$
 $rac{\partial f}{\partial x} = y$ $rac{\partial f}{\partial y} = x$

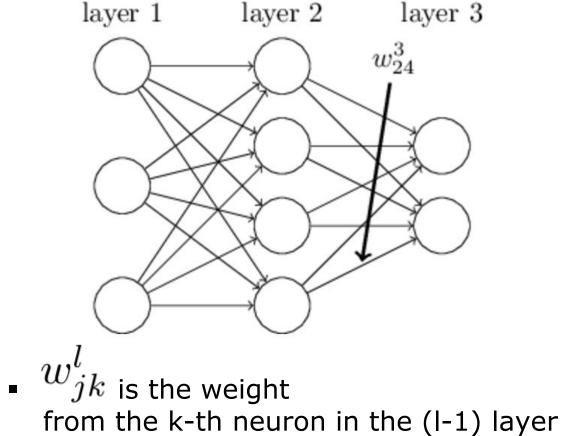
- Maximisation
 - Gradient routes back through the max. branch

$$f(x,y)=\max(x,y) \hspace{0.1in} rac{\partial f}{\partial x}=1(x>=y) \hspace{0.1in} rac{\partial f}{\partial y}=1(y>=x)$$

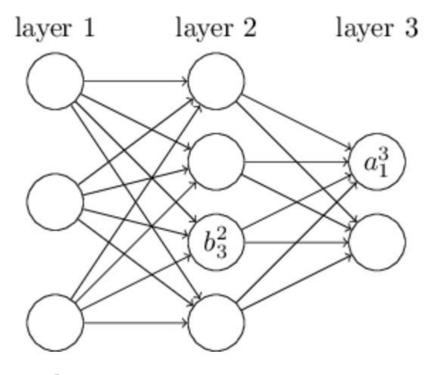
- ReLU
 - Gradient flows back for positive and stops if negative
- Branching f(x) = ReLU(x) $\frac{\partial f}{\partial x} = 1(x > 0)$
 - Gradients of all branches added



Notation: w, b



- to the j-th neuron in the l-th layer
- w^l : weigth matrix for the I-th layer



Nielsen, 2015

- b_j^l is the bias
 - of the j-th neuron in the l-th layer
 - b^l bias vector for the I-th layer

Notation: *a*, *z*

• *Activation* of the *j*-the neuron in the *l*-th level:

$$a_j^l = \sigma \left(\sum_k w_{jk}^l a_k^{l-1} + b_j^l
ight)$$

Activation vector at the /-th layer:

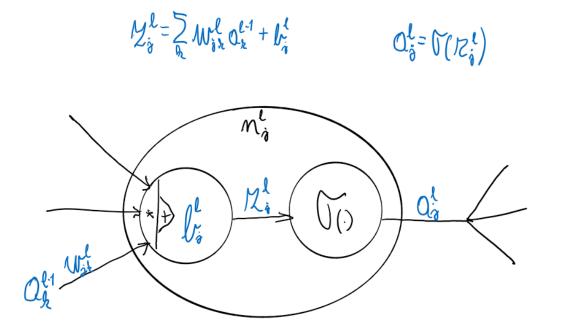
$$a^l = \sigma(w^l a^{l-1} + b^l) = \sigma(z^l)$$

 Weighted input to the *j*-the neuron in the *l*-th level:

$$z_j^l = \sum_k w_{jk}^l a_k^{l-1} + b_j^l$$

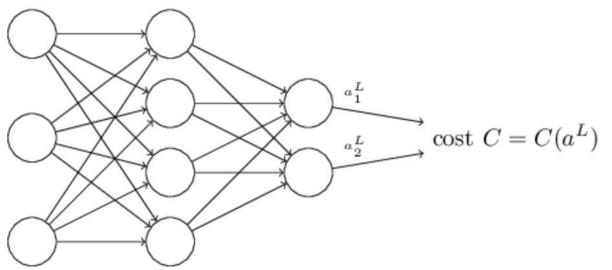
Vector of weighted inputs at the *I*-th layer:

$$z^l \equiv w^l a^{l-1} + b^l$$



Assumptions about loss function

- Two assumptions about loss function:
- 1. The loss function C can be written as an average over cost functions C_x for individual images x
- 2. The loss function *C* can be written as a function of the outputs from the neural network



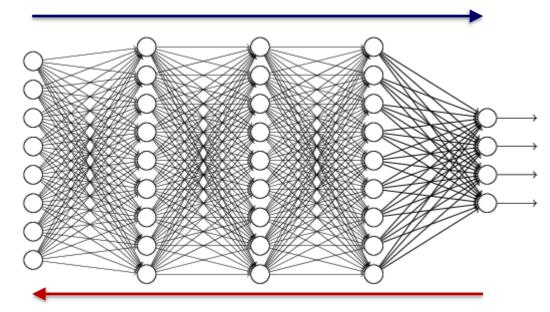
Main principle

- We need the gradient of the Loss function ∇C
- Two phases:
 - Forward pass; propagation: the input sample is propagated through the network and the error at the final layer is obtained

 ∂C

 ∂w^l_{il}

 $rac{\partial C}{\partial b_i^l}$



 Backward pass; weight update: the error is backpropagated to the individual levels, the contribution of the individual neuron to the error is calculated and the weights are updated accordingly

Chain rule

$$f(g(x))$$
 $\qquad \frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}$

$$\begin{aligned} z_k^{l+1} &= \sum_j w_{kj}^{l+1} a_j^l + b_k^{l+1} \\ a_j^l &= \sigma(z_j^l) \\ \frac{\partial C}{\partial z_j^l} &= \frac{\partial C}{\partial a_j^l} \frac{\partial a_j^l}{\partial z_j^l} = \sum_k \frac{\partial C}{\partial z_k^{l+1}} \frac{\partial z_k^{l+1}}{\partial a_j^l} \frac{\partial a_j^l}{\partial z_j^l} = \sum_k \frac{\partial C}{\partial z_k^{l+1}} \frac{\partial a_j^{l+1}}{\partial a_j^l} \frac{\partial a_j^l}{\partial z_j^l} \\ z_k^{l+1} &= \sum_j w_{kj}^{l+1} \sigma(z_j^l) + b_k^{l+1} \end{aligned}$$

Learning strategy

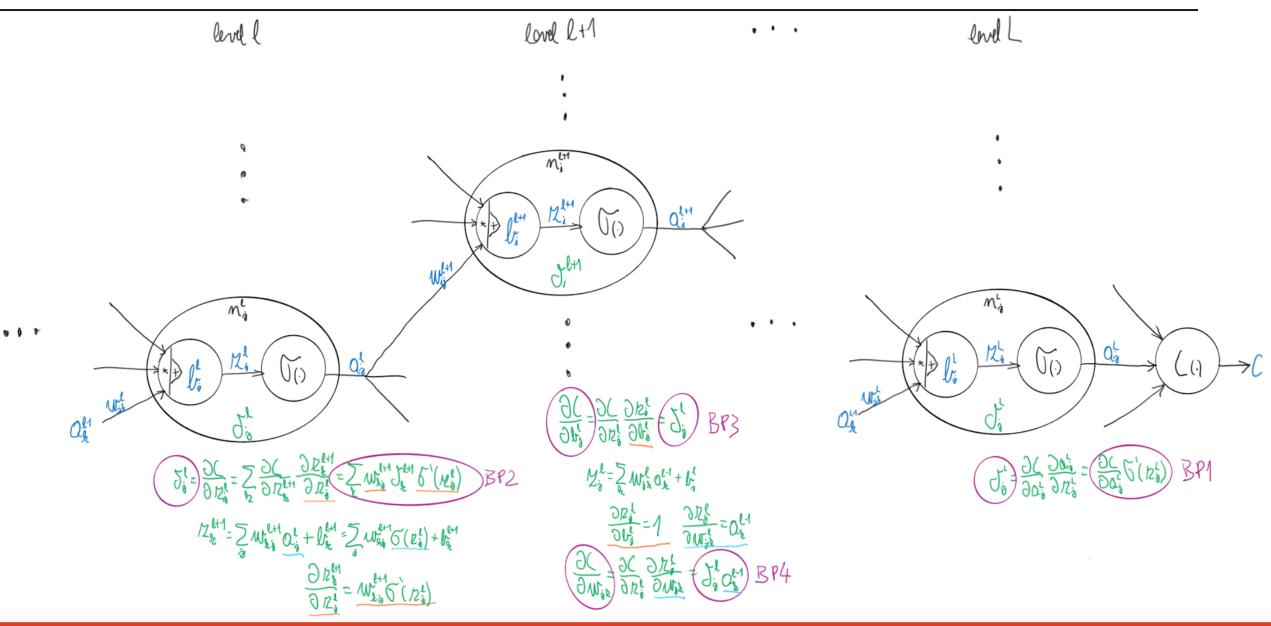
- To obtain the gradient of the Loss function ∇C : $\frac{\partial C}{\partial b_i^l} = \frac{\partial C}{\partial w_{jk}^l}$
 - For every neuron in the network calculate the error of this neuron

$$\delta^l_j \equiv {\partial C \over \partial z^l_j}$$

- This error propagates through the network causing the final error
- Backpropagate the final error to get all δ_i^l

• Obtain all
$$\frac{\partial C}{\partial b_j^l}$$
 and $\frac{\partial C}{\partial w_{jk}^l}$ from δ_j^l

Derivation of backpropagation



Equations of backpropagation

• BP1: Error in the output layer:

$$\delta^L_j = rac{\partial C}{\partial a^L_j} \sigma'(z^L_j) \qquad \qquad \delta^L =
abla_a C \odot \sigma'(z^L)$$

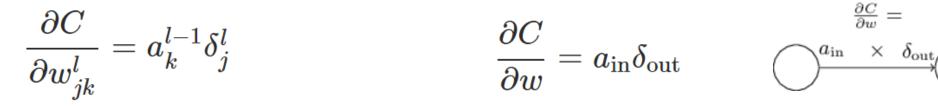
• BP2: Error in terms of the error in the next layer:

$$\delta^l_j = \sum_k w^{l+1}_{kj} \delta^{l+1}_k \sigma'(z^l_j) \qquad \qquad \delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$

BP3: Rate of change of the cost wrt. to any bias:

$$rac{\partial C}{\partial b_j^l} = \delta_j^l \qquad \qquad rac{\partial C}{\partial b} = \delta$$

BP4: Rate of change of the cost wrt. to any weight:



Backpropagation algorithm

- **Input** *x*: Set the corresponding activation a^1 for the input layer
- Feedforward: For each $l = 2, 3, \dots, L$ compute $z^l = w^l a^{l-1} + b^l$ and $a^l = \sigma(z^l)$
- Output error δ^L : Compute the output error $\delta^L = \nabla_a C \odot \sigma'(z^L)$
- Backpropagate the error:

For each
$$l=L-1,L-2,\ldots,2$$

compute $\delta^l=((w^{l+1})^T\delta^{l+1})\odot\sigma'(z^l)$

• Output the gradient:

$$rac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l \qquad rac{\partial C}{\partial b_j^l} = \delta_j^l$$

For a number of **epochs**

Until all training images are used

Select a **mini-batch** of *m* training samples

For each training sample $oldsymbol{x}$ in the mini-batch

Input: set the corresponding activation $a^{x,1}$

Feedforward: for each
$$l=2,3,\ldots,L$$
 compute $z^{x,l}=w^la^{x,l-1}+b^l$ and $a^{x,l}=\sigma(z^{x,l})$

Output error: compute $\delta^{x,L} = \nabla_a C_x \odot \sigma'(z^{x,L})$

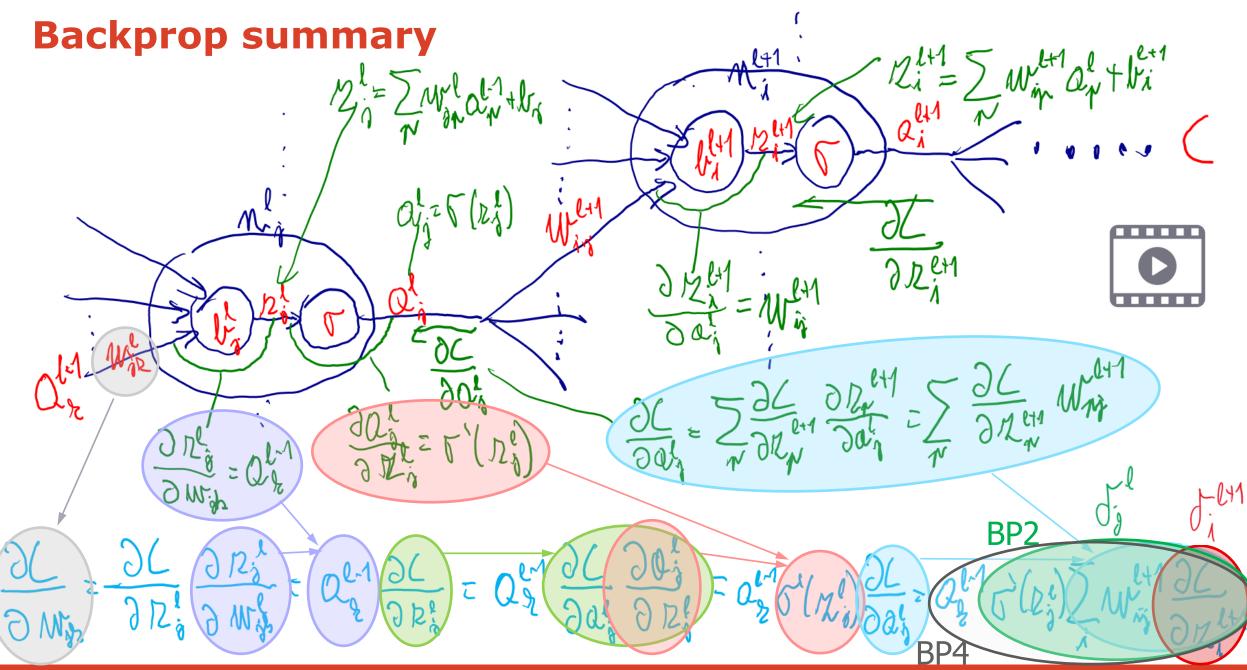
Backpropagation: for each
$$\ l=L-1,L-2,\ldots,2$$
 compute $\delta^{x,l}=((w^{l+1})^T\delta^{x,l+1})\odot\sigma'(z^{x,l})$

Gradient descend: for each l = L, L - 1, ..., 2 and x update:

$$egin{aligned} &w^l o w^l - rac{\eta}{m} \sum_x \delta^{x,l} (a^{x,l-1})^T \ &b^l o b^l - rac{\eta}{m} \sum_x \delta^{x,l} \end{aligned}$$

Example code: Backpropagation

```
def backprop(self, x, y):
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        # feedforward
        activation = x
        activations = [x] # list to store all the activations, layer by layer
        zs = [] # list to store all the z vectors, layer by layer
        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation)+b
                                                           def cost derivative(self, output activations, y):
            zs.append(z)
                                                               return (output activations-y)
            activation = sigmoid(z)
            activations.append(activation)
       # backward pass
                                                                            def sigmoid(z):
        delta = self.cost_derivative(activations[-1], y) * \
                                                                                 return 1.0/(1.0+np.exp(-z))
            sigmoid prime(zs[-1])
        nabla b[-1] = delta
                                                                        def sigmoid prime(z):
        nabla_w[-1] = np.dot(delta, activations[-2].transpose())
                                                                            return sigmoid(z)*(1-sigmoid(z))
        for l in xrange(2, self.num_layers):
            z = zs[-1]
            sp = sigmoid prime(z)
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
            nabla b[-1] = delta
            nabla w[-1] = np.dot(delta, activations[-1-1].transpose())
        return (nabla b, nabla w)
```

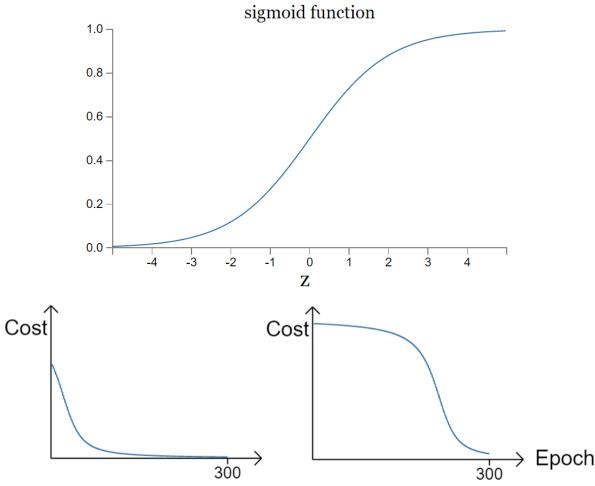


Quadratic (L2) loss function

$$egin{aligned} C(w,b) &\equiv rac{1}{2n} \sum_x \|y(x)-a\|^2 \ C &= rac{(y-a)^2}{2} \end{aligned}$$

Partial derivatives depend on σ'

$$rac{\partial C}{\partial w} = (a-y)\sigma'(z)x$$
 $rac{\partial C}{\partial b} = (a-y)\sigma'(z)$



 In case of sigmoid activation function and small or large activations -> slow learning!

$$C(w,b)\equiv rac{1}{2n}\sum_x \|y(x)-a\|^2$$

In case of **linear** neurons in the output layer: (

$$a_j^L = z_j^L$$

Partial derivatives:

$$egin{aligned} rac{\partial C}{\partial w_{jk}^L} &= rac{1}{n}\sum_x a_k^{L-1}(a_j^L-y_j) \ rac{\partial C}{\partial b_j^L} &= rac{1}{n}\sum_x (a_j^L-y_j) \end{aligned}$$

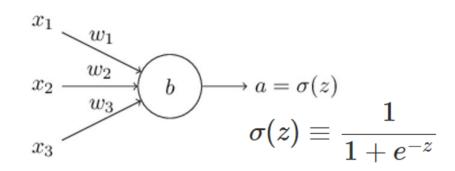
• Error in the output layer:

$$\delta^L = a^L - y_1$$

Cross-entropy loss function

• For one neuron with **sigmoid** activation function:

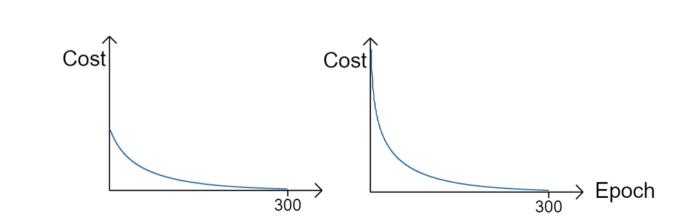
$$C=-rac{1}{n}\sum_x \left[y\ln a+(1-y)\ln(1-a)
ight]$$



• Partial derivatives do not depend on σ' any more!

$$egin{aligned} rac{\partial C}{\partial w_j} &= rac{1}{n} \sum_x x_j (\sigma(z) - y) \ rac{\partial C}{\partial b} &= rac{1}{n} \sum_x (\sigma(z) - y) \end{aligned}$$

Slow learning problem avoided



Cross-entropy loss function

 $(==\frac{1}{2}\sum_{n}\left(n_{1}\ln(5(r_{2}))+(1-n_{2})\ln(1-5(r_{2}))\right)$ $\frac{\partial C}{\partial W_{i}} = \frac{\partial C}{\partial R} \frac{\partial R}{\partial W_{i}} = -\frac{1}{m} \sum_{X} \left(\frac{X}{\sigma T_{X}} \frac{\Gamma'(x)}{\sigma T_{X}} - \frac{1-\Lambda}{1-\Gamma(x)} \frac{\Gamma'(x)}{\sigma T_{X}} \right) X_{ij} =$ $= -\frac{1}{2} = \frac{1}{2} \frac{(1 - b_{12}) - (1 - a_{1})b_{12}}{b_{12}} = \frac{1}{2} = \frac{1}{2} \frac{1}{2}$ = 12 1-15th) - M(1) + 10 + 10 X;= $= \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2}$

Cross-entropy loss function

For many neurons:

(

$$C=-rac{1}{n}\sum_x\sum_j \left[y_j\ln a_j^L+(1-y_j)\ln(1-a_j^L)
ight]$$

Partial derivatives in the output layer:

$$\frac{\partial C}{\partial w_{jk}^L} = \frac{1}{n} \sum_x a_k^{L-1} (a_j^L - y_j) \qquad \qquad \frac{\partial C}{\partial b_j^L} = \frac{1}{n} \sum_x (a_j^L - y_j)$$

Error in the output layer:

$$\delta^L = a^L - y$$

- Categorical cross-entropy loss:
$$C = -rac{1}{n}\sum_{x}\sum_{j}y_{j}\ln a_{j}^{L}$$

Softmax layer

The activation function is defined as:

$$a_j^L = rac{e^{z_j^L}}{\sum_k e^{z_k^L}}$$

$$z_j^L = \sum_k w_{jk}^L a_k^{L-1} + b_j^L$$

The activations sum to 1:

$$\sum_j a_j^L = rac{\sum_j e^{z_j^L}}{\sum_k e^{z_k^L}} = 1$$

- => the activations could be considered as probabilities the output layer can be considered as a probability distribution
- Properties of Softmax:

 - Monotonic function: increasing z^L_j increases a^L_j
 Any output activation a^L_j depends on all the weighted inputs

Categorical Cross-entropy loss function

Loss function for **Softmax** output layer:

$$C\equiv -\sum_j y_j \ln a_j^L$$

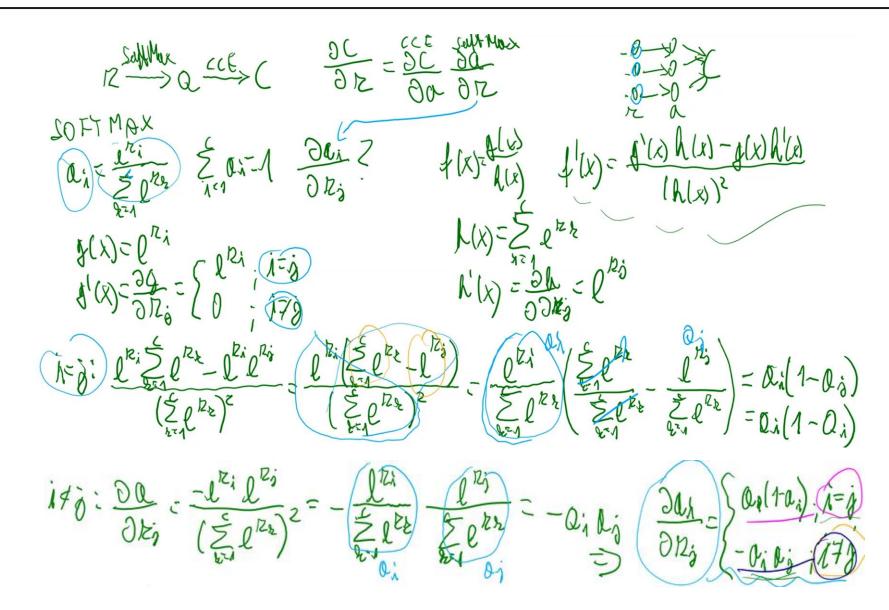
Partial derivatives in the output layer:

$$egin{aligned} rac{\partial C}{\partial b_j^L} &= a_j^L - y_j \ rac{\partial C}{\partial w_{jk}^L} &= a_k^{L-1}(a_j^L - y_j) \end{aligned}$$

Error in the output layer:

$$\delta_j^L = a_j^L - y_j$$

Categorical Cross-entropy loss function



Categorical Cross-entropy loss function

CCF 2(In Osc) () Ch DR: 1 221 JEQ1 = Sr. Rider fre AT . Bi 5-a-18 50 101

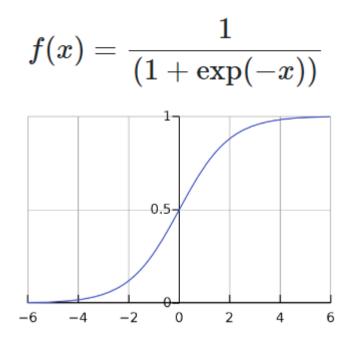
Activation function	Loss function
Linear	Quadratic
$a_j^L = z_j^L$	$C(w,b)\equiv rac{1}{2n}\sum_x \ y(x)-a\ ^2$
Sigmoid 1	Cross-entropy
$\sigma(z)\equivrac{1}{1+e^{-z}}$	$C=-rac{1}{n}\sum_x\sum_j \left[y_j\ln a_j^L+(1-y_j)\ln(1-a_j^L) ight]$
Softmax $e^{z_j^L}$	Categorical Cross-entropy
Softmax $a_j^L = rac{e^{z_j^L}}{\sum_k e^{z_k^L}}$	$C=-rac{1}{n}\sum_{x}\sum_{j}y_{j}\ln a_{j}^{L}$

$$rac{\partial C}{\partial w^L_{jk}} = a^{L-1}_k (a^L_j - y_j) \qquad rac{\partial C}{\partial b^L_j} = a^L_j - y_j \qquad \quad \delta^L_j = a^L_j - y_j$$

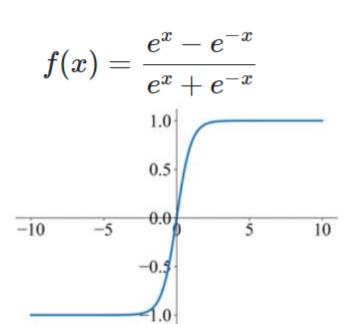
Activation functions

Method	Papers		
ReLU	8096	SELU Self-Normalizing Neural Networks	178
Sigmoid Activation	5363	PReLU Delving Deep into Rectifiers: Surpassing Human-Level	86
GeLU Gaussian Error Linear Units (GELUs)	5285	Performance on ImageNet Classification ReLU6	
Tanh Activation	4936	MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications	58
Leaky ReLU	915	Hard Swish	54
GLU Language Modeling with Gated Convolutional Networks	372	 Searching for MobileNetV3 Maxout Maxout Networks 	45
Swish Searching for Activation Functions	254	Maxout Networks ELU	34
Softplus	204	Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)	54
Mish	183	[<u>https://paperswithcode.com</u>]	

Sigmoid



- Continuous values from 0 to 1
- Saturated neurons slow down learning
- Not zero-centered
- Not very fast to compute



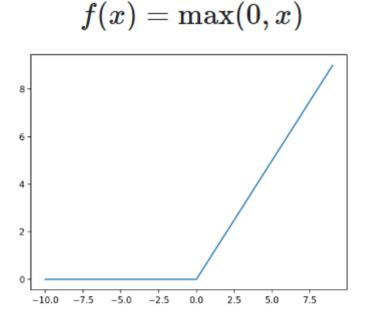
- Continuous values from -1 to 1
- Zero-centered

tanh

- Saturated neurons slow down learning
- Not very fast to compute

ReLU

GELU



- Rectified linear unit
- Do not saturate for x>0
- Computationally very efficient
- Faster convergence
- Dead neurons for x<0
 - Not zero-centered

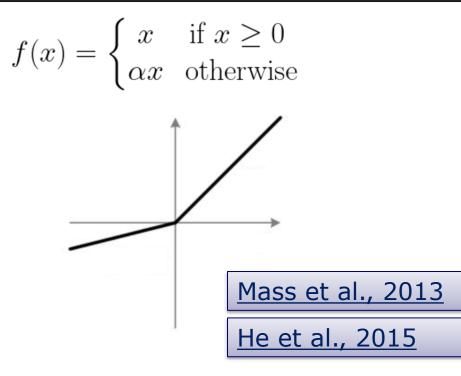
$$f(x) = xP(X \le x) = x\Phi(x) = x \cdot \frac{1}{2} \left[1 + \operatorname{erf}(x/\sqrt{2}) \right]$$

$$X \sim \mathcal{N}(0, 1)$$

$$f(x) \approx x\sigma(1.702x)$$

- Gaussian Error Linear Unit
- Weights inputs by their percentile
- Smoother ReLU
- Less saturated neurons
- Not zero-centered <u>Hendrycks, et al., 2016</u>
- Often use in Transfromers

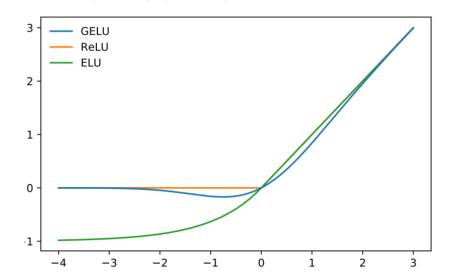
Leaky ReLU



- ReLU with non-zero output for x<0
- Slope for x<0 controllable with a
 - It can be learned in PReLU
- Do not saturate
- More zero-centered
- Very fast to compute

ELU

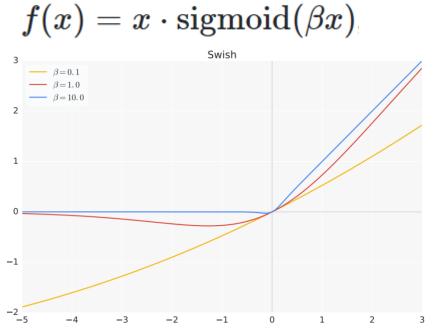
 $lpha(\exp(x)-1) ext{ if } x\leq 0$



- Exponential Linear Unit
- More zero-centered
- Less saturated neurons
- Not very fast to compute

SWISH

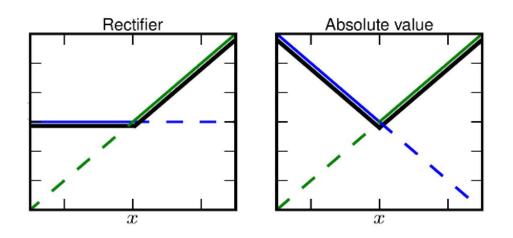
Maxout



- Learnable parameter β
- Can be fixed to 1 $\rightarrow~f(x)=x\sigma(x)$
 - Sigmoid Linear Unit SiLU
- More zero-centered
- Less saturated neurons

Ramachandran et al., 2017 Elfwing et al., 2017

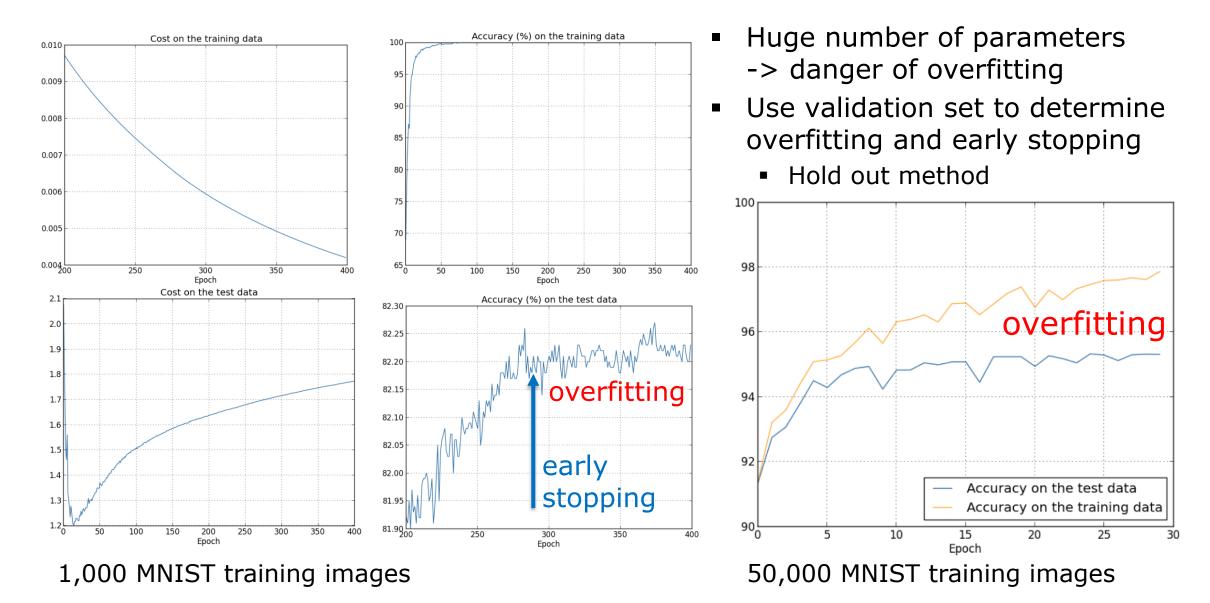
$$f(x)=\maxig(w_1^Tx+b_1,w_2^Tx+b_2ig)$$



- Piecewise linear function
- Neurons do not saturate
- Two sets of parameters
- Computationally expensive

Activation functions recap

- ReLU usually suffices the first choice
- Do not use sigmoid and tanh in hidden layers, use ReLU instead
- Select the activation function in the hidden layers according to the type of the neural network:
 - ReLU for CNNs (or Leaky ReLU, or ELU, etc.)
 - Sigmoid or tanh for RNNs
 - GELU for Transformers
- Select the activation function in the output layer according to the loss function:
 - Linear for L2 loss (regression)
 - Sigmoid for Cross-entropy (binary classification, multilabel classification)
 - Softmax for Categorical cross-entropy (multiclass classification)
- Experiment for the best choice



Regularization

- How to avoid overfitting:
 - Increase the number of training images $\boldsymbol{\Im}$
 - Decrease the number of parameters ⊗
 - Regularization ☺
- Regularization:
 - L2 regularization
 - L1 regularization
 - Dropout
 - Data augmentation

L2 regularisation

- Add the regularisation term in the loss function
 - L₂ norm

Regularisation parameter

$$C=-rac{1}{n}\sum_{xj}\left[y_j\ln a_j^L+(1-y_j)\ln(1-a_j^L)
ight]+rac{\lambda}{2n}\sum_w w^2$$

Regularisation term

$$C = rac{1}{2n} \sum_x \lVert y - a^L
Vert^2 + rac{\lambda}{2n} \sum_w w^2$$

$$C=C_0+rac{\lambda}{2n}\sum_w w^2$$

Weight decay

Loss function:

$$C=C_0+rac{\lambda}{2n}\sum_w w^2$$

Partial derivatives:

$$rac{\partial C}{\partial w} = rac{\partial C_0}{\partial w} + rac{\lambda}{n} w \qquad \qquad rac{\partial C}{\partial b} = rac{\partial C_0}{\partial b}$$

• Update rules:

$$\begin{split} w &\to w - \eta \frac{\partial C_0}{\partial w} - \frac{\eta \lambda}{n} w \qquad b \to b - \eta \frac{\partial C_0}{\partial b} \\ &= \left(1 - \frac{\eta \lambda}{n}\right) w - \eta \frac{\partial C_0}{\partial w} \\ & \text{Weight decay} \end{split}$$

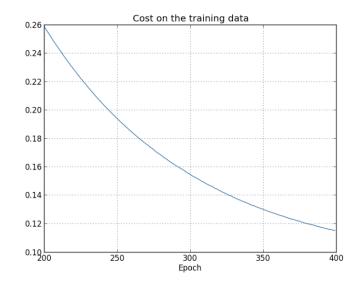
Regularised SGD

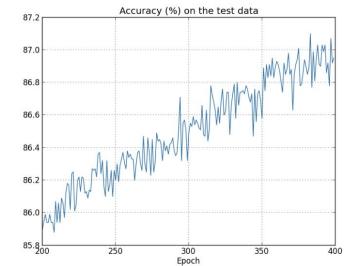
Regularized learning rules for SGD:

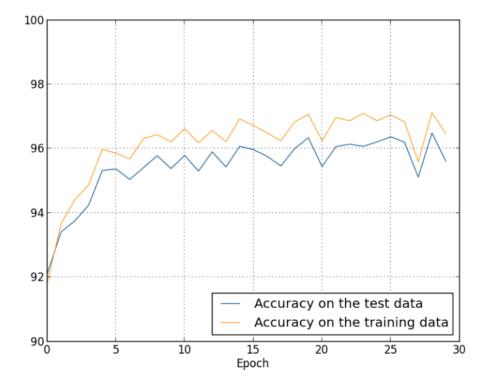
$$w o \left(1 - rac{\eta \lambda}{n}
ight) w - rac{\eta}{m} \sum_x rac{\partial C_x}{\partial w} \; ,$$

$$b o b - rac{\eta}{m} \sum_x rac{\partial C_x}{\partial b}$$

- Improved performance!
 - Overfitting decreased







L1 regularization

L₁ regularization term

$$C = C_0 + rac{\lambda}{n}\sum_w |w|$$

Partial derivatives:

$$rac{\partial C}{\partial w} = rac{\partial C_0}{\partial w} + rac{\lambda}{n} \operatorname{sgn}(w)$$

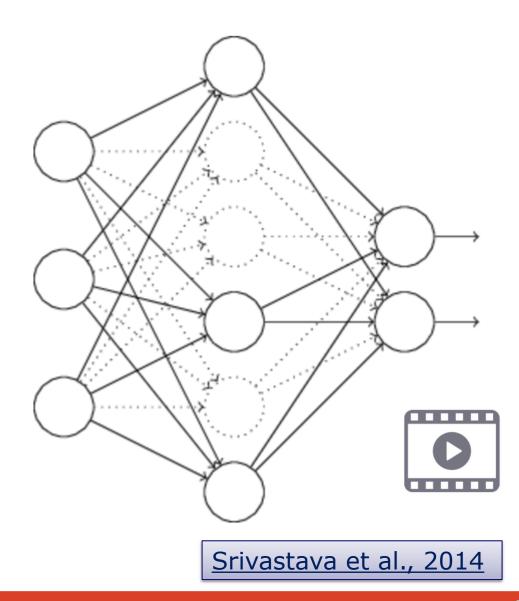
• Update rule:

$$w o w' = w - rac{\eta\lambda}{n} \mathrm{sgn}(w) - \eta rac{\partial C_0}{\partial w}$$
Shrinking term

Concentrate on relatively small number of high-importance connections

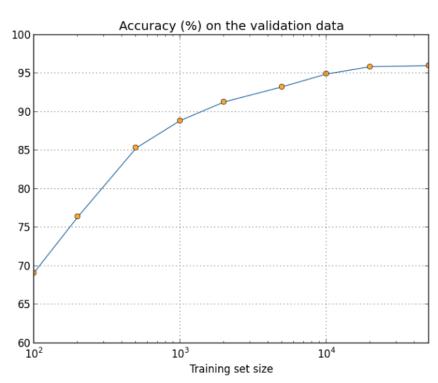
Dropout

- Randomly (and temporarily) delete half (or p) hidden neurons in the network
- Then restore the neurons and repeat the process
- Halve the weights when running the full network in test time
- Or double the weights during learning
- Ensemble learning: training multiple networks and averaging the results
- Reduces complex co-adaptations of neurons
- Smaller models harder to overfit
- Usually significantly improves the results

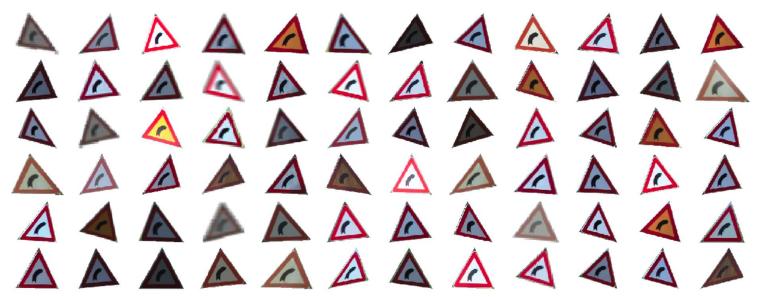


Data augmentation

Use more data!



- Synthetically generate new data
- Apply different kinds of transformations: translations, rotations, elastic distortions, appearance modifications (intensity, blur)
- Operations should reflect real-world variation



Data preprocessing

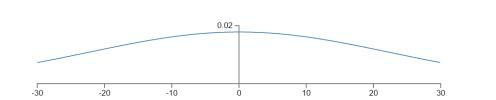
- Curate the dataset
 - Identify/deal with missing values
 - Identify/deal with outliers
 - Data cleaning
 - Data engineering
 - Trash in trash out
- Data reduction
 - Data selection
 - Dimensionality reduction
- Data normalisation
 - Data scaling
 - Mean-centering
 - Transforming to unit variance
- Same on train and test data!

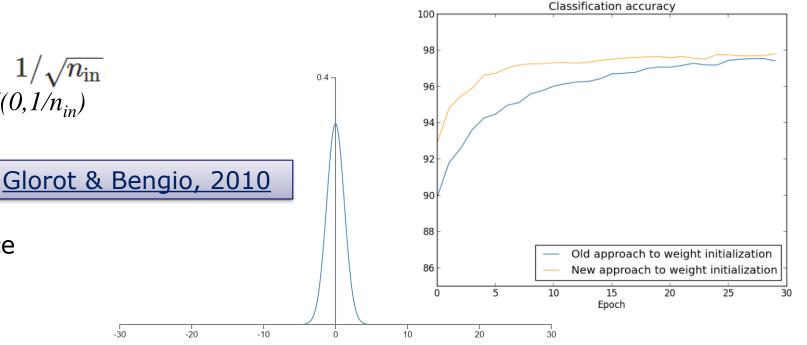
Weight initialization

- Ad-hoc normalization
 - Initialize weights with *N*(0,1)
 - Variance is growing with n_{in}
 - Many large z
 => many saturated neurons
 - Slow learning
- Better initialization
 - Normalize variance with $1/\sqrt{n_{\rm in}}$
 - Initialize weights with $N(0, 1/n_{in})$
 - Total variance is limited
 - Faster learning!
- In case of ReLU:
 - ReLU halves the variance

He et al., 2015

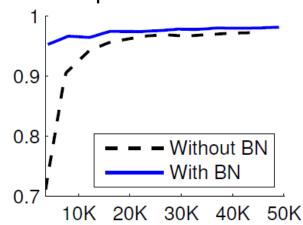
Init with N(0, 1/(n_{in}/2))





Batch normalisation

- Reducing internal covariate shift
- Normalising (whitening) layer inputs for each training mini-batch
 - Normalising with per-dimension mean and variance
- Speeds up learning
- Improves the gradient flow
- Regularisation
- Allows
 - Using higher learning rates
 - Less careful initialisation
 - Less dropout

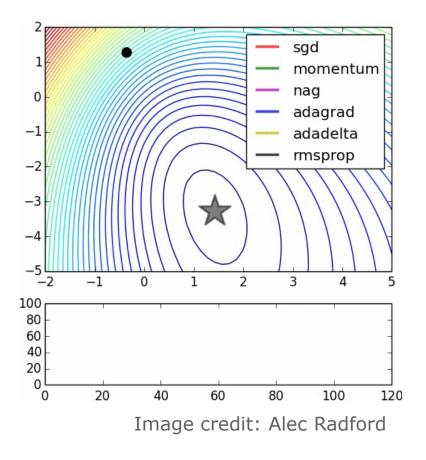


Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathbf{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Ioffe and Szegedy, 2015

Parameter-update optimizers

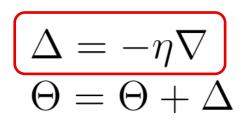
- Different schemes for updating the weights
 - Gradient descend
 - Momentum update
 - AdaGrad update
 - RMSProp update
 - Adam update
 - Learning rate decay

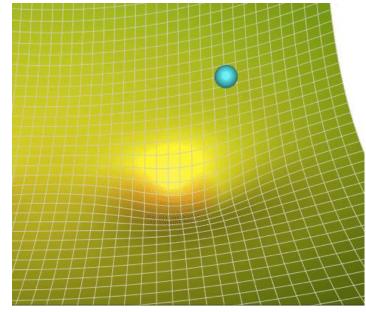


Gradient descend

Algorithm:

- Initialize v
- Until stopping criterium riched
 - Apply udate rule $v o v' = v \eta \nabla C$.





Video credit to Lili Jiang: https://github.com/lilipads/gradient_descent_viz

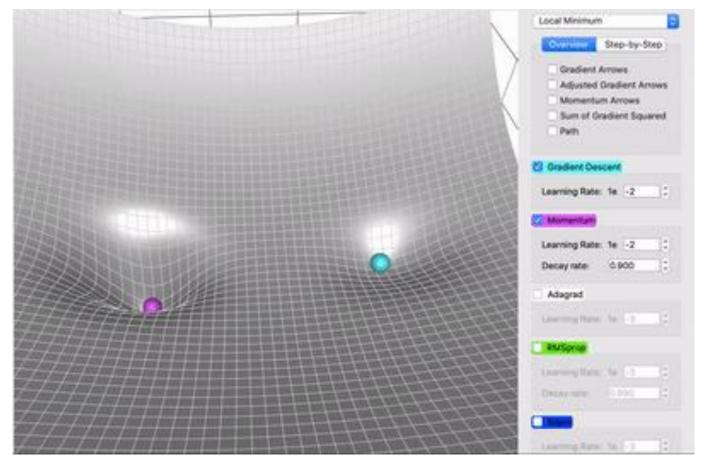
- Vanilla gradient descend can be very inefficient
- Take into account different slopes in different dimensions

Momentum update

 Accumulate speed in the individual dimensions

$$\begin{split} \Delta &= -\eta \nabla + \beta \Delta \\ \Sigma_{\nabla} &= \beta \Sigma_{\nabla} + \nabla \\ \Delta &= -\eta \Sigma_{\nabla} \end{split}$$

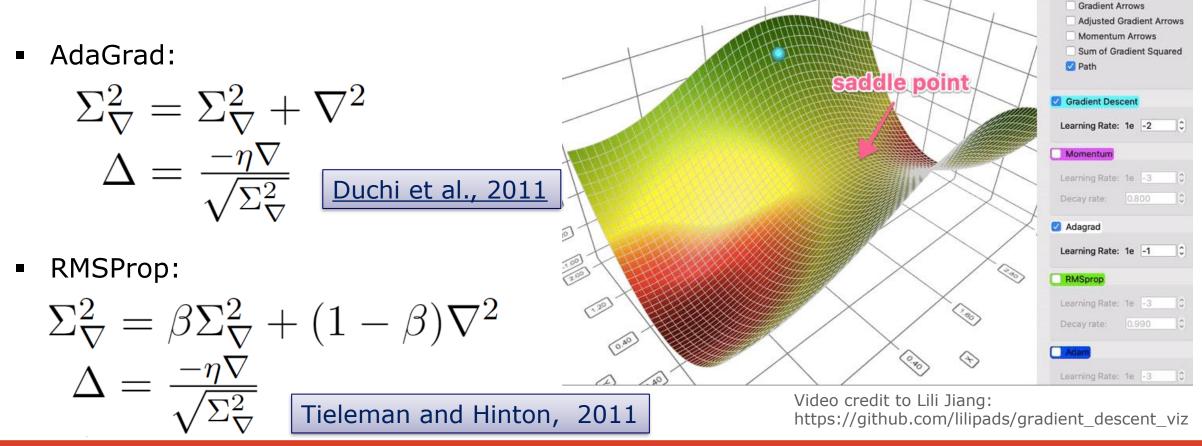
- Cancels the oscillation in steep dimensions
- Builds up speed in shallow dimensions
- Faster convergence
- It may avoid local minima



Video credit to Lili Jiang: https://github.com/lilipads/gradient_descent_viz

AdaGrad and RMSProp updates

- Different learning rates for different dimensions
 - Scaling gradient in the individual dimensions
- Normalising the changes with the accumulated magnitudes of changes in the individual dimensions



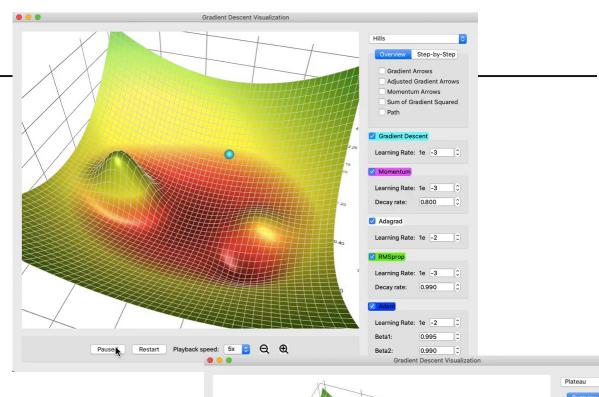
Step-by-Step

Adam update

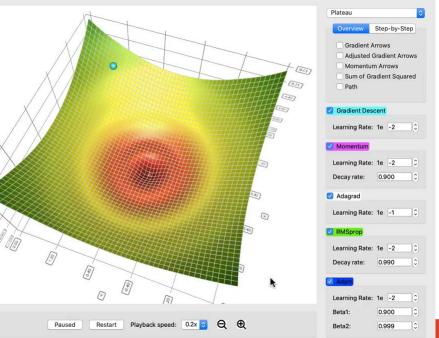
- Considering both ideas:
 - Keeping momentum
 - Adaptive learning rate
- ADAptive Moment estimation

$$\begin{split} \Sigma_{\nabla} &= \beta_1 \Sigma_{\nabla} + (1 - \beta_1) \nabla \\ \Sigma_{\nabla}^2 &= \beta_2 \Sigma_{\nabla}^2 + (1 - \beta_2) \nabla^2 \\ \Delta &= \frac{-\eta \Sigma_{\nabla}}{\sqrt{\Sigma_{\nabla}^2}} \end{split}$$

- Usually works fine
 - The default choice



Video credit to Lili Jiang: https://github.com/lilipa ds/gradient_descent_viz



Parameter-update optimizers

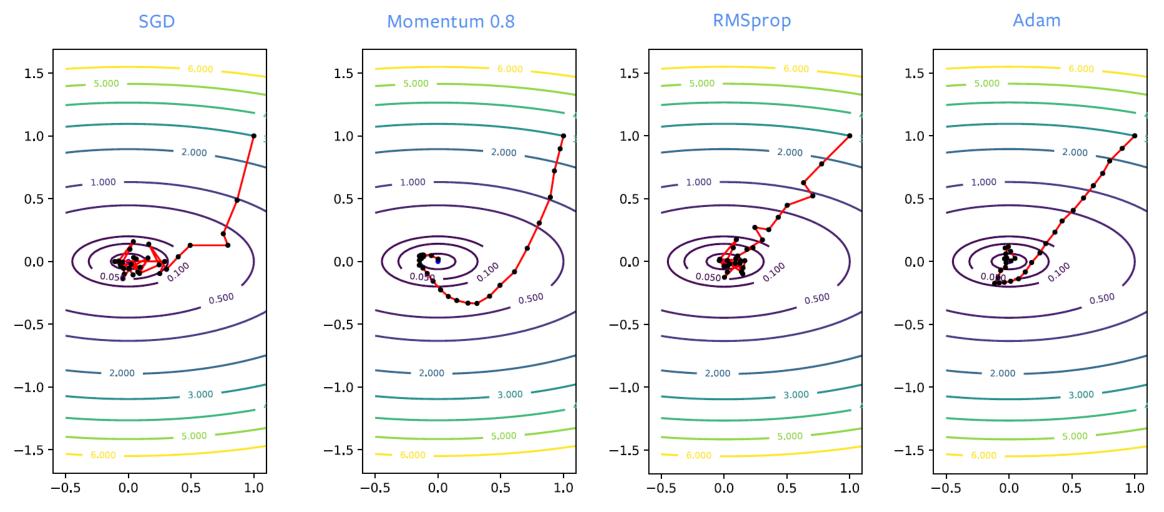
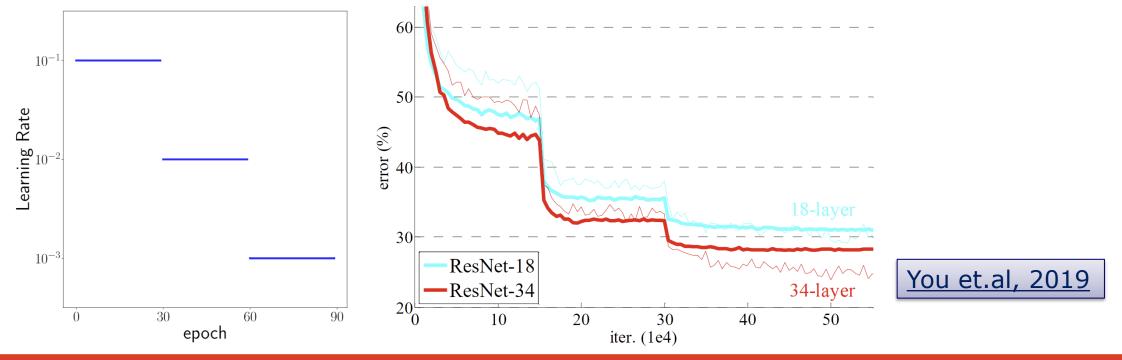


Image credit: Y. LeCun

Learning rate decay

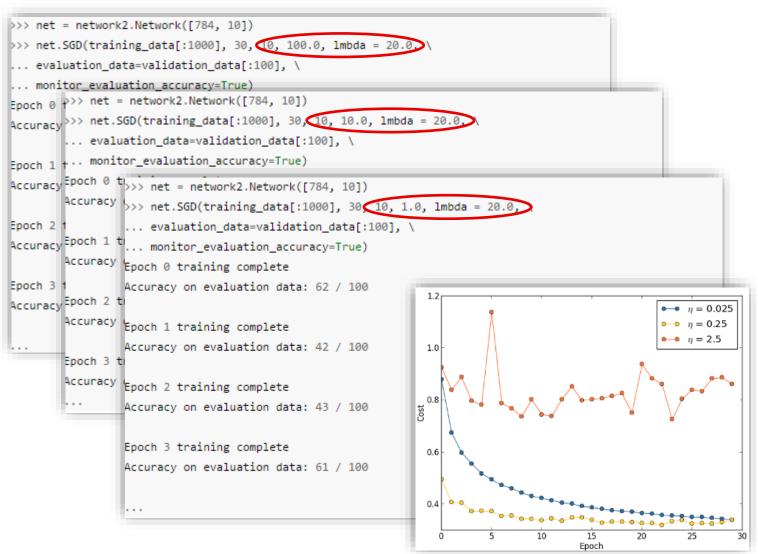
- Start with a large learning rate
 - Escape spurious local minima
 - Suppresses the network from memorizing noisy data
- and decay it multiple times
 - Refine the solution and avoid oscillation
 - Improves the learning of complex patterns

- Learning rate schedule:
 - Step decay
 - Linear decay
 - Exponential decay
 - Inverse
 - Inverse sqrt



Setting up the network

- Set up the network
- Get any non-trivial learning
 - Even on a smaller problem to speed up the process
 - Can overfit to training data
 - Then scale up the data
- Monitor progress
- Set up reasonable η
 - You may define learning rate schedule
- Define regularization param.
 - Start with $\lambda = 0$, increase it
- Use early stopping
 - To decrease number of epochs
- Cross-validate
- Automate the process of determining parameters



Hyperparameter optimisation

- Cross-validation of multiple parameters
- Coarse to fine cross-validation
 - First for a few epochs, coarse search
 - Then for more epochs, finer search
- Automated parameter sampling
 - Grid search
 - Random sampling of parameters
 - Sample in log space
- Run multiple validations simultaneously
- Actively observe the learning progress
 - visualise the loss curve, observe the results
- Hyperparameters to optimize:
 - Network architecture (architecture, number of layers, kernel sizes, loss function, etc.)
 - Learning rate, decay schedule, optimiser
 - Regularisation parameters (L2, dropout)
- Automated parameter search NAS

