
APROXIMATION AND
RANDOMIZED ALGORITHMS

Borut Robič (January 10, 2023) 1

• Lectures Borut Robič , Exercises Uroš Čibej
• both Laboratory for algorithmics, LA

• Lectures
• Transparencies in English

• Literature
• Transparencies (e-Ucilnica)
• Aproksimacijski algoritmi (B.Robič) (in Slovene)
• …

• Projects
• See next transparency

• Exams
• Only written exams, with questions related to lectures and exercises

Borut Robič (January 10, 2023) 2

Projects

• Each of you will make two projects: one on approximation algorithms and the other on
randomized algorithms.

• A project may present
• a problem + an approximation/randomized algorithm for solving the problem + results of analysis
• a theoretical topic concerning approximation/randomized algorithms or corresponding classes

• Sources:
• books, research papers, internet (wikipedia, …)

• A project must
• be written in English
• with LaTeX (preferably, not necessarily)
• start with your name, title of the project, bibliographic data of the source (with link if existing)
• extract important info (skip “unimportant” details) so that your colleagues can learn smthg from it

• Presentation of the projects
• at the end of the semester (last few Wednesdays)
• send me pdfs of your projects (to get marks)
• upload pdfs to e-Ucilnica (to be read by your colleagues)
• prepare yourself for oral presentation (10-15min)

The whole class: establish and maintain (e-Ucilnica) a list of projects you have chosen (so that
your projects will differ as much as possible).

Borut Robič (January 10, 2023) 3

Contents
• Introduction

• Complexity of Optimization
• Approximate Solving of Problems
• Design of Approximation Algorithms

• Randomized Solving of Problems
• Design of Randomized Algorithms

Borut Robič (January 10, 2023) 4

Introduction

Incomputable Problems

P incomputable
• ⟺ ¬∃alg A: A solves ∀instance p∊P
• i.e., ∀alg A fails on some p∊P

Issue:
• ¬∃alg A*: A* decides whether or not A

solves p∊P

Computable Problems

P computable
• ⟺∃alg A: A solves ∀instance p∊P

•
Issue:
• running time of A may be too large

to be acceptable

Computational Problems

Borut Robič (January 10, 2023) 5

Intractable Problems

Running time of solving p∊P is
• superpolynomial (in size |p|=n of p)
• exponential (in size |p|=n of p)
• …
• i.e., too large to wait for the solution
• e.g., problems in the classes

NPH, NPC, NPI, EXPTIME,
PSPACE

Tractable Problems

Running time of solving p∊P is
• polynomial (in size |p|=n of p)
• bearable (for small sizes |p|=n of p)

• e.g. problems in P
(matrix multiplication, …)

Computable Problems

Borut Robič (January 10, 2023) 6

Intractable Problems

What can we do when we face an intractable problem P?

• Design a (slightly) faster exact algorithm A for P
• Makes sense if we want to solve a slightly larger p∊P

• Design a parallel exact algorithm A for P
• Makes sense if

• ∃ parallel computer M with m processors and
• P is amenable to parallelization

• Issue: speedup can be at most m (constant)

• Design a quantum algorithm A for P
• Issue: ∃ of general purpose quantum computer

• Design a heuristic algorithm A for P
• Such an alg. A applies intuitive, ad hoc ideas (which can be good, bad, wrong, irrelevant)

and returns suboptimal solutions in reasonable time (possibly polynomial)
• Issue: intuition can be misleading ⇒ quality of suboptimal solutions may be low

(cont.)

Borut Robič (January 10, 2023) 7

(cont’d)
Idea: Design a fast heuristic algorithm A for P that will

guarantee certain quality of the returned suboptimal solutions

Design an
approximation algorithm for P

An approximation algorithm A for P
• is a heuristic algorithm which, for

any instance p ∊ P, returns in
polynomial time a suboptimal
solution to p with bounded error
(relative to the optimal solution).

• algorithm A trades exactness for
running time while guaranteeing
limited error of the returned
solutions.

Design a
randomized algorithm for P

A randomized algorithm A for P
• is a heuristic algorithm which, for

any instance p ∊ P, returns in
polynomial time a solution whose
probability of being false is < 1.

• such an algorithm trades certainty
for running time while guaranteeing
limited probability of error in the
solutions.

How?

Borut Robič (January 10, 2023) 8

Computational Problems in General

Notation:

• P … a computational problem

• I … the set of instances of P

• x … x ∊ I, an instance of P

• S(x) … the set of all feasible solutions of x ∊ I

• S = ∪x∊I S(x) … the set of all feasible solutions of all instances of P

• P ⊆ I × S … a computational problem is a set of pairs (x,s),
where x ∊ I and s ∊ S(x) is a feasible solution of x

E.g. P = copy a given set of files to the smallest number of CDs of given capacity; x = a set of files of
given sizes and CDs of given capacities; S(x) = set of possible mappings of given files to given CDs

Borut Robič (January 10, 2023) 9

(cont’d)

Kinds of computational problems:

• Search problems: Find any feasible solution s ∊ S(x) to instance x ∊ I
• Example. Copy a given set of files to given CDs

• Optimization problems: Find the best feasible solution s*∊S(x) to x ∊ I
• Example. Copy a given set of files to minimal number of given CDs

• Decision problems: Decide whether or not x ∊ I meets a given condition
• Example. Can a given set of files be copied to 5 given CDs?

We will be interested
• in hard optimization problems

and their solving with algorithms
• that run in polynomial time
• and return good suboptimal solutions (not necessarily optimal ones)

Borut Robič (January 10, 2023) 10

Algorithm Analysis
Models of Computation
• Selected characteristic properties of a family of computing machines

are gathered in an abstract model of computation.
• Some models: DFA, SA, TM, RAM, μ-recursive functions, λ-calculus,

general recursive functions, Markov algorithms, PRAM, …

• We use models to evaluate computation resources (time and space)
required to run an algorithm and/or solve a computational problem.

• Models with logarithmic cost criterion
• time/space required to perform an operation depends on operands’ size
• lore precise and more difficult analyses

• Models with uniform cost criterion
• time/space required to perform an operation is constant
• less precise and easier analyses

Borut Robič (January 10, 2023) 11

(cont’d)

Problem instances
Algorithms can only solve instances of a problem.
• Obtained when we substitute formal parameters of a problem with actual ones
• Actual parameters are encoded in some alphabet Σ, usually Σ = {0,1}.
• An instance x ∊ I of a problem is encoded into a word e(x) over Σ.
• |e(x)|, the length of the code e(x), is the size of x ∊ I. Time and space complexity

are defined to be functions T(n) and S(n) of n = size(x).

Worst- , best-, average-case analyses
How fast do time/space complexity T(n) and S(n) grow when n grows?
• Worst-case analysis tells us how fast grow T(n) and S(n)

when solving most unfavorable instances. Results are too pessimistic.
• Best-case analysis tells us how fast grow T(n) and S(n)

when solving most favorable instances. Results are too optimistic.
• Average-case analysis tells us how fast grow T(n) and S(n)

when solving randomly chosen instances. The analysis is usually more difficult.
Results are more realistic.

Borut Robič (January 10, 2023) 12

(cont’d)

Asymptotic notation
How fast do T(n) and S(n) grow when n is large and tends to infinity?
• f(n) = O(g(n)) … f grows at most as fast as g
• f(n) = Ω(g(n)) … f grows at least as fast as g
• f(n) = Θ(g(n)) … f grows as fast as g

Computational complexity of an algorithm
• is the asymptotic growth of the execution time T(n) or space S(n) required by an

algorithm A to solve instances x ∊ I of size(x) = n (for n large and growing)

Computational complexity of a problem
• O(g(n)) is an upper bound for time/space complexity of a problem P

if ∃alg. A (for P): A has time/space complexity O(g(n)).
• Ω(g(n)) is a lower bound for time/space complexity of a problem P

if ∀alg. A (for P): A has time/space complexity Ω(g(n)).
• Θ(g(n)) is the time/space complexity of a problem P

if O(g(n)) and Ω(g(n)) are upper and lower bounds for time/space complexity of P

Borut Robič (January 10, 2023) 13

(cont’d)

What is and what isn’t known
• At least one of the ⧧ must be ⧧. Currently we don’t know which.

NP-complete and NP-hard problems
• NP-complete problem is in NP

and every problem in NP can
be reduced to it in polynomial time

Borut Robič (January 10, 2023) 14

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME
⊂

≠? ≠? ≠?

≠?

NP NP

Every problem in NP can be
reduced to NP-hard problem
in polynomial time

Computational Complexity of
Optimization problems

Optimization Problems

• An optimization problem P is a 4-tuple P = (I, S, m, goal), where
• I … the set of all instances of P
• S … a function that maps x ∊ I to S(x), the set of all feasible solutions to x
• m … a value function that maps (x,y) to m(x,y) ∊ 𝐑+ , where y ∊ S(x)
• goal

• = min … for minimization problems P (searching for a y ∊ S(x) that minimizes m(x,y))

• = max … for maximization problems P (searching for a y ∊ S(x) that maximizes m(x,y))

• An optimal solution of an instance x ∊ I is a feasible solution y*∊ S(x)
such that goaly ∊ S(x) {v ∊ 𝐑+| v = m(x,y)}) (i.e., y* minimizes/maximizes
m(x,y)).

Notation: S*(x) … the set of all optimal solutions to x;
m*(x) … optimal value m(x,y*) of an optimal solution y* to x .

Borut Robič (January 10, 2023) 15

(cont’d)

Graphically:

Forms of optimization problems:
• constructive, Pcon : compute m*(x) and y*(x), for a given x ∊ I
• nonconstructive, Pnon : compute m*(x) , for a given x ∊ I
• decision, Pdec : decide, for given x ∊ I and K ∊ R, whether

• m*(x) ⩽ K [if goal = min]
• m*(x) ⩾ K [if goal = max]

Borut Robič (January 10, 2023) 16

S(x)

I

S*(x)

m*(x) m(x,y)

y

x

y*

R0

Complexity Classes of Optimization Problems

• NPO is the class of optimization problems P = (I,S,m,goal) such that
• the question x∊?I can be decided in poly(|x|) time;
• the question y∊?S(x) can be decided in poly(|x|) time;
• |y| = poly(|x|), for y∊S(x);
• m(x,y) can be computed in poly(|x|,|y|) time.
So, it is only the computation of m*(x) and y*(x) that matters and dictates the time complexity of
solving the problem P (i.e. its instances). (All other checking is fast.)

• PO is a subclass of NPO; it contains all optimization problems whose
constructive forms Pcon are solvable in polynomial time; that is,
(∀Pcon∊ PO) (∃alg A) (∀x ∊ I) : A returns y*(x) and m*(x) in poly(|x|) time.

• We will find more classes in the following.

Borut Robič (January 10, 2023) 17

NPO
PO

NP-hard Optimization Problems
For the proofs of the following theorems see the book Borut Robič, Aproksimacijski algoritmi, Založba UL FRI, 2009.

• Theorem. P ∊ NPO ⇒ Pdec ∊ NP
• Definitions. An oracle for a problem P is an abstract device which, for any

instance x ∊ I of P, returns in one step the solution to x. A problem P1 is Turing-
reducible to a problem P2, written P1 ≼ P2, if there is an algorithm R that solves
P1 by using the results of finitely many calls to an oracle for P2. If such an R
has polynomial time complexity, then we say that P1 is polynomially Turing-
reducible to P2, and denote this by P1≼p P2 .

• Definition. An optimization problem P is NP-hard if P’≼pP, for every P’∊NPO.
• Consequence. Pdec is NP-complete ⇒ P is NP-hard
• Theorem. P ⧧ NP ⇒ PO ⧧ NPO

• Comment. Since we strongly suspect that P ⧧ NP, we believe that there are
optimization problems which cannot be solved in polynomial time. The obvious
candidates for such problems are the NP-hard optimization problems.

Borut Robič (January 10, 2023) 18

APPROXIMATE SOLVING
OF OPTIMIZATION PROBLEMS

When we face an NP-hard optimization problem we usually give up
searching for an exact polynomial-time algorithm.
Instead, we may search for a heuristic algorithm that trades precision of
solutions for execution time. Such an inexact algorithm is called the
approximation algorithm.

Borut Robič (January 10, 2023) 19

Approximation Algorithms
Definition

• An algorithm A is an approximation algorithm (a.a.) for P = (I,S,m,goal)
if, for any x ∊ I, the algorithm A returns a feasible solution A(x) ∊ S(x).

• Graphically (goal = min):

• We will only be interested in a.a.’s A with polynomial time complexity in |x| (= n).

Borut Robič (January 10, 2023) 20

S(x)

I

S*(x)

m*(x) m(x,A(x))

A(x)

x

R0

A

(cont’d)

Quality of Approximate (i.e. Sub-optimal) Solutions

• A(x) is not necessarily optimal solution (i.e. not necessarily A(x) ∊ S*(x)),
so we may have m(x,A(x)) ⧧ m*(x).

• We want to find an a.a. A such that the “difference” between m(x,A(x)) and
m*(x) is as “small” as possible (i.e. A(x) is as “close” as possible to some y*∊S*(x)).

• Therefore, we must somehow evaluate the “difference” between m(x,A(x))
and m*(x), i.e. the quality of the approximate solution A(x).

• Question: How can we possibly measure the quality of A(x) (and hence of A)
in terms of the optimal value m*(x), when m*(x) is unknown?

• Answer. There are three approaches to the definition of this quality:
• Absolute error
• Relative error
• Performance quotient.

Borut Robič (January 10, 2023) 21

(cont’d)

Absolute Error

• Definition. Absolute error of a feasible solution y ∊ S(x) is defined to be
D(x,y) = |m*(x) - m(x,y)|.

• In case of a.a. A, we are interested in the situation where, for ∀x ∊ I, D(x,A(x))
is bounded above with a constant.

• Definition. A is absolute approximation alg. for P if ∃k⩾0 ∀x∊I: D(x,A(x))⩽k.
Intuitively, for every instance of P, the absolute error made by A is at most k; i.e., the difference
between the optimal value m*(x) and the suboptimal value m(x,A(x)) will never be greater than k.

• Unfortunately, NP-hard optimization problems often have no absolute error.

• Hence: Absolute error D(x,y) is too sharp a definition to be generally useful.
We must find a better definition.

Borut Robič (January 10, 2023) 22

(cont’d)

Relative Error

• Definition. Relative error of a feasible solution y ∊ S(x) is defined to be

• Note:
, so always 0 ⩽ E(x,y) ⩽ 1.

In fact: E(x,y) = 0 ⟺ y is optimal. E(x,y) = 1 ⟺ no guarantees for the quality of y.

• In case of a.a. A, we are interested in the situation where, for ∀x ∊ I, E(x,A(x))
is bounded above with a constant.

• Definition. A is 𝜀-approximation algorithm for P if ∃𝜀∊[0,1] ∀x∊I: E(x,A(x))⩽𝜀.
Intuitively, for every instance of P, relative error made by A is at most 𝜀; the relative error of the

suboptimal value m(x,A(x)) (relative to the optimal value m*(x)) will never be greater than 𝜀.

• Of course, we want 𝜀 to be as close as possible to 0.

Borut Robič (January 10, 2023) 23

E(x, y) =
|m⇤(x)�m(x, y)

max{m⇤(x),m(x, y)}

goal =

(
min) E(x, y) = 1� m⇤(x)

m(x,y)

max) E(x, y) = 1� m(x,y)
m⇤(x)

(cont’d)

Performance quotient

• Definition. Performance quotient of a feasible solution y ∊ S(x) is defined to be

• Note:
, so always 1 ⩽ R(x,y).

In fact: R(x,y) = 1 ⟺ y is optimal. R(x,y) → ∞ ⟺ no guarantees for the quality of y.

• In case of a.a. A, we are interested in the situation where, for ∀x ∊ I, R(x,A(x))
is bounded above with a constant.

• Definition. A is r-approximation alg. for P if ∃r ⩾1 ∀x∊I: R(x,A(x)) ⩽ r.
Intuitively, for every instance of P, performance quotient of the suboptimal value m(x,A(x)) (relative to
the optimal value m*(x)) will never be greater than r.

• We want r to be as close as possible to 1.

Borut Robič (January 10, 2023) 24

R(x, y) = max

⇢
m(x, y)

m⇤(x)
,
m⇤(x)

m(x, y)

�

goal =

(
min) R(x, y) = m(x,y)

m⇤(x)

max) R(x, y) = m⇤(x)
m(x,y)

(cont’d)

Relations between E(…) and R(…)

• It is easy to show that

• So: If A is r-a.a., then A is 𝜀-a.a. with

If A is 𝜀-a.a., then A is r-a.a. with

• Therefore, it is not (very) important which of E or R we use.
In literature, both are used.
How do we find which is meant?
That is easy. Example:

“… 0.5-approximation algorithm …” --- E is meant (since always 0⩽E⩽1)
“… 1.5-approximation algorithm …” --- R is meant (since always 1⩽R)

Borut Robič (January 10, 2023) 25

E(x, y) = 1� 1

R(x, y)
.

" = 1� 1

r
.

r =
1

1� "
.

Approximable problems and the class APX
• We are interested in optimization problems in NPO (due to practical importance).

Which of these problems can be efficiently solved by approximation algorithms?

• Definition. An optimization problem P ∊ NPO is 𝜀-approximable if there is
a polynomial-time 𝜀-a.a. with 𝜀 < 1 for P. (Similarly: P is r-approximable if there
is a polynomial-time r-a.a. with r < ∞ for P.)

• Theorem. Let P ∊ NPO. Then: P is 𝜀-approximable ⟺ P is r-approximable

• Let us gather all 𝜀-approximable problems P ∊ NPO in a new class.
• Definition. APX is the class of all 𝜀-approximable problems in NPO.

• Question. Is every problem in NPO also in APX?
That is: Is every optimization problem in NPO 𝜀-approximable? Equivalently: APX =? NPO.
(That would be nice and extremely useful in practice.)

• Theorem. P ⧧ NP ⇒ APX ⊊ NPO.
• Currently we believe that P ⧧ NP, so we believe that there are optimization problems in

NPO that have no polynomial-time 𝜀-a.a. with 𝜀 < 1 (i.e. efficient 𝜀-a.a).

Borut Robič (January 10, 2023) 26

(cont’d)

Proof. Assume that P ⊊ NP and D ∊ NP-P a decision problem. So there is a nondet.
poly-time alg. N which, for ∀x ∊ ID , computes the answer Yes/No in poly-time p(|x|).
Consequently, the length of N’s computation of the answer to x is at most p(|x|).

Now define an optimization problem P =(I,S,m,goal) as follows:
• I = {x| |x| ⩾ 2}
• S(x) = {y| y is a code representing N’s computation on input x}

So, if y ∊ S(x), then y is a p(|x|)-long computation containing the answer Yes/No to x.
Of course, all y ∊ S(x) contain the same answer to x.

• (Note: m(x,y) = |x| ⟺ answer is yes)

• goal: irrelevant.

Suppose that P ∊ APX. Then ∃poly-time 𝜀-a.a. A with 𝜀<1. Now let n0 ∊ 𝐍 be such that

We can prove that |x| ⩾ n0 ⇒ m(x,A(x)) = m*(x). [Omitted]
What does that mean? Algorithm A can be used to decide the problem D (i.e., any x ∊ ID)
deterministically in polynomial time. This means that D ∊ P. But we assumed D ∊ NP-P !
If P ⊊ NP, the contradiction can only be avoided by abandoning supposition P ∊ APX. ⧠

Borut Robič (January 10, 2023) 27

m(x,y) :=

(
|x| if y answers Yes

1 if y answers Yes

n0 >
1

1� "
(hence

n0 � 1

n0
> ")

(cont’d)

• We now know this:

• We believe that P ⧧ NP, so we believe that there are optimization problems
in NPO that have no polynomial-time 𝜀-a.a. with 𝜀 < 1 (i.e. no efficient 𝜀-a.a)

• Such a problem is the TRAVELING SALESPERSON problem.

Borut Robič (January 10, 2023) 28

NPO
PO

APX

P ≠ NP ⇒

Approximation Threshold

• Then it is natural to ask: Is there a poly-time 𝜀2-a.a. with 𝜀2<𝜀1 for P?
In other words: Is there a more accurate poly-time a.a. for P?

• Answer. It depends on the problem P and on the current 𝜀1 .
• In principle, 𝜀 can be reduced to a certain limit value 𝜏P ∊ [0,1), which is

associated to (and depends on) the problem P. We call 𝜏P the approximation
threshold of the problem P.

Borut Robič (January 10, 2023) 29

NPO
PO

APX
If P is here, then probably (P≠NP)

there is no poly-time !-a.a. with !<1.
If P is here, then there exists a

poly-time !1-a.a. with some !1<1.

0 1 τP !1 !2 !3 !4 !5

⎨⎩ ⎧

possible values of ! for P

(cont’d)

• So, problems in APX differ in their approximation thresholds, and hence in how
well their optimal solutions can be approximated by poly-time 𝜀-a.a.’s.

• This means that polynomial-time Turing reductions ≼p between optimization
problems do not, generally, preserve their approximation thresholds.

• The lower 𝜏P , the better approximation of optimal solution of x∊I is possible.

• To prove nonexistence of a poly-time r-a.a. with r in a given interval [1,1+g]
(or of a poly-time 𝜀-a.a. with 𝜀 in the corresponding interval) we can use the Gap Theorem.

• In case the quality is defined by R (performance quotient), the theorem tells us that
under certain conditions, // see the details in my book //

r ∊ [1,1+g] ⇒ ¬∃ A: A is a poly-time r-a.a. with r ∊ [1,1+g] for P
(unless P = NP).

The value g is called the gap.

Borut Robič (January 10, 2023) 30

0 1 τP

⎨⎩ ⎧
for these ! there are polytime !-a.a.’s for P

for these ! there are no polytime !-a.a.’s for P
the existence of a polytime τP-a.a. depends on P

⎨⎩ ⎧

(cont’d)

Example (BIN PACKING).

• BIN PACKING is a minimization problem defined as follows.

Pack n objects of sizes si, i=1,2,…,n, in the smallest number of bins each of capacity 1.

• By applying the gap theorem, it can be found that g = ½. Therefore, there is no
poly-time r-a.a. with r<1+g = 3/2 for this problem [unless P = NP]

• This means that every poly-time r-a.a (or 𝜀-a.a.) for BIN PACKING will return
suboptimal solutions that are at least 50% worse than the optimal solution.

Proof. For minimization problems R = m/m*. From R ≥ 1+g = 3/2, we obtain m/m* ≥ 3/2
and then m ≥ 3/2 m* and finally m ≥ m* + 1/2 m*. We see that any computed suboptimal
value m will exceed the minimal value m* by at least 1/2m* = 50% of m*. ⧠

Borut Robič (January 10, 2023) 31

Approximation Schemes
Motivation
• There exist optimization problems P ∊ APX that have approximation thresholds
𝜏P = 0. These problems allow arbitrarily accurate poly-time 𝜀-a.a.’s.

• Let P be such a problem. Then, for any given sequence 𝜀1,𝜀2,𝜀3,…,𝜀k , where
0<𝜀k< …< 𝜀3< 𝜀2<𝜀1 <1, there exists a sequence A𝜀1, A𝜀2, A𝜀3, …, A𝜀k of poly-
time 𝜀i -a.a.’s (i = 1,2,…,k), whose accuracies improve as i increases.

• Two questions naturally arise:

• How similar are the algorithms A𝜀i (i = 1, 2, …, k) to each other?

• How much additional time requires A𝜀(i+1) compared with A𝜀i (i = 1,2, …,k-1)?

Borut Robič (January 10, 2023) 32

Polynomial Approximation Schemes and the Class PTAS

• If the algorithms A𝜀1, A𝜀2, A𝜀3, …, A𝜀k completely differ one from another
then this is not fine, as we must must design, for each smaller 𝜀i+1, a new
algorithm A𝜀(i+1) – this requires inventiveness, creativity, lucky ideas, time, …

• However, it may happen that A𝜀1, A𝜀2, A𝜀3, …, A𝜀k are similar one to another,
even so similar that they share a common framework (have uniform structure)
𝒜(𝜀), where 𝜀 is a formal parameter. Then we can write A𝜀i = 𝒜(𝜀i).

• So, to obtain a more accurate approximation algorithm A𝜀(i+1) for this problem
we only need to plug 𝜀(i+1) into 𝒜(𝜀) (i.e., 𝜀 := 𝜀(i+1)). Then, A𝜀(i+1) = 𝒜(𝜀(i+1)).

• Definition. A framework 𝒜(𝜀) described above is called the polynomial
approximation scheme (PAS) for the optimization problem P ∊ APX.

Borut Robič (January 10, 2023) 33

(cont’d)

• It is good if P∊APX has a PAS. Let us gather all such problems in a class:

Definition. The class PTAS contains all problems P∊NPO that have PAS.
The acronym PTAS stands for “”polynomial-time approximation schemes”.

• Theorem. PTAS ≠ ∅ (i.e., the class is not empty).
Proof. Later we will show that the problem KNAPSACK is in PTAS. ⧠

• Theorem. PTAS ⊆ APX
Proof. If a problem has PAS, then by definition P is in APX. ⧠

• Theorem. P ≠ NP ⇒ PTAS ⊊ APX
Proof. We will see that BIN PACKING is not in PTAS (we already know that it is in APX.) ⧠

• Graphically:

Borut Robič (January 10, 2023) 34

NPO
PO

APX

P ≠ NP ⇒
PTAS

Fully Polynomial Approximation Schemes and the Class FPTAS

• Let P∊NPO and A𝜀1, A𝜀2, …, A𝜀k poly-time 𝜀-a.a.’s for P where 𝜀i >𝜀(i+1) .
Now, 1/𝜀 represents the accuracy of A𝜀: the smaller 𝜀, the greater accuracy 1/𝜀.

• But greater accuracy requires more computation and more time. We want the
execution time of A𝜀 to be a polynomial function in 1/𝜀, e.g. 𝒪(n2 logn ⋅(1/𝜀)2) or
𝒪(n3 ⋅ 1/𝜀), and not exponential function in 1/𝜀, e.g. 𝒪(n2 ⋅21/𝜀). Then greater
accuracy requires at most polynomial additional time to compute more precise
suboptimal results.

• Such a PAS is called the fully polynomial approximation scheme (FPAS) for P.

Borut Robič (January 10, 2023) 35

(cont’d)

• Let us gather all optimization problems that have FPAS into a new class:

Definition. The class FPTAS contains all problems P∊NPO that have FPAS.
The acronym FPTAS stands for “fully polynomial-time approximation schemes”.

• If P is NP-hard, then it is very useful if P∊FPTAS. Why? The optimal solution to
P can be approximated by FPAS 𝒜(𝜀) to arbitrary precision 1/𝜀 in poly-time.

• Theorem. FPTAS ≠ ∅ (the class is not empty).
Proof. KNAPSACK is in FPTAS. ⧠

• Theorem. FPTAS ⊆ PTAS
Proof. Trivial. ⧠

• Theorem. P ≠ NP ⇒ FPTAS ⊊ PTAS
Proof.(idea) We show that if P ≠ NP then INDEPENDENT SET ∊ PTAS - FPTAS. ⧠

• Graphically:

Borut Robič (January 10, 2023) 36

NPO
PO

APX

P ≠ NP ⇒
PTAS

FPTAS

Limits of Approximation

• Let P∊FPTAS. There is a FPAS 𝒜(𝜀) for P. If 𝜀 → 0, the accuracy 1/𝜀 of 𝒜(𝜀)
increases and, consequently, 𝒜(𝜀) returns in poly-time suboptimal solutions
that tend to the optimal solution.

• Question. Does that mean that 𝒜(0) is exact poly-time algorithm for P?
Answer. No, our intuition is misleading. In fact, the following holds.
Theorem. PO ⊆ FPTAS

Proof. ⧠

Theorem. P ≠ NP ⇒ PO ⊊ FPTAS
Proof. ⧠

• Therefore, if P ≠ NP, there are optimization problems which have FPAS,
but are not exactly solvable in polynomial time.

Borut Robič (January 10, 2023) 37

NPOPO

APX

P ≠ NP ⇒
PTAS

FPTAS

NPH

The Design of Approximation Algorithms
Introduction

• Approximation algorithms are heuristic algorithms.
• There exist several design methods that we can use to develop

an approximation algorithm for a given optimization problem P:

• Greedy method
• Focusing on sub-problems of P
• Sequential partitioning
• Dynamic programming

Borut Robič (January 10, 2023) 38

Greedy Method
Idea of the Method
• During the construction of a suboptimal solution to an instance of a problem P,

select and pick, whenever possible, currently the “best option” available.
Here, the “best option” is the one that maximally improves (depending on the
goal of P) the value of the current partially constructed solution.

• The method advocates local optimization during the construction of solutions.

• In general, local optimization (greediness) doesn’t return optimal solutions.
Sometimes, picking an option that is not locally optimal may be paid off later!

• Nevertheless, greedy method may return good suboptimal solutions.
• Consequently, it can be used to design approximation algorithms.

Borut Robič (January 10, 2023) 39

PROBLEM: KNAPSACK

• Definition. Fill a knapsack of given load-capacity with most valuable subset
of a given set of objects. Formally:
• Instance of the problem:

• X = {x1,…,xn} … set of n objects
• ai ∊ 𝐍 … weights of objects i=1,2,…,n
• pi ∊ 𝐍 … values of objects i=1,2,…,n
• b ∊ 𝐍 … load-capacity

• Feasible solution: every Y ⊆ X such that ∑xi ∊ Y ai ⩽ b … every subset Y of X not heavier than b
• Quality of a feasible solution Y: m(Y) = ∑xi ∊ Y pi … value of Y
• Goal: Find a feasible solution Y* which maximizes m(Y).

• KNAPSACK is NP-hard optimization problem.
• Can we design an approximation algorithm for it?

Theorem. P ⧧ NP ⇒ KNAPSACK has no poly-time absolute a.a.
Proof. See my booklet. ⧠

• So, let us try to design a poly-time r-a.a. for KNAPSACK. Since goal = max, a feasible
solution Y will be “good” if the performance quotient R = m*/m(Y) is small, close to 1.

• We will describe two attempts: algorithm G and algorithm H.

Borut Robič (January 10, 2023) 40

(cont’d)

Algorithm G
• Idea. Sort X by descending values of ratios (value densities) pi/ai, i=1,2,…,n.

Rename the objects to obtain x1, x2, …, xn , where pi/ai ≥ pi+1/ai+1.
• Algorithm G.

YG := ∅ ;
for i := 1 to n do

if xi can be added to YG // i.e., if b ≥ ai (b = the remaining capacity)
then YG := YG U { xi} ; b := b - ai

endfor;
return(YG).

• Algorithm G greedily adds to YG, at each step, the object with largest value density.
• Time complexity of algorithm G:

• sorting requires Θ(n log n) time;
• adding elements to YG requires O(n) time;
• overall, time complexity is Θ(n log n).

• Hence, algorithm G is poly-time.

Borut Robič (January 10, 2023) 41

(cont’d)

• Quality of suboptimal solutions YG

How much is the performance quotient R(YG) = m*/m(YG)?
Theorem. For every k ∊ ℕ there exists a (worst-case) instance of KNAPSACK,

such that R(YG) = m*/m(YG) > k.

Intuitively: Pick a large k, say k = 100. From the above relation m*/m(YG) > k follows
that m(YG) < m*/k = m*/100. So, we can obtain, in the worst case, a suboptimal solution
YG whose value m(YG) is k=100-times smaller than the optimal m*. Since k is arbitrarily
large, algorithm G may return arbitrarily bad sub-optimal solutions YG.

Proof. Consider instances with
p1 = p2 = … = pn-1 = 1 and pn = b-1
a1 = a2 = … = an-1 = 1 and an = b.

Then algorithm G returns YG = { xn } whose value is m(YG) = m({ xn }) = b-1. The optimal solution
is, for example, {x1,x2,…,xb }, and its value is m* = b. The performance ratio is m*/m(YG) = b/(b-1).
Pick an arbitrary k∊ℕ. To complete the proof, there must be an instance meeting the requirement
m*/m(YG)>k. This is easy: the instance must satisfy the relation b/(b-1)>k, so b < 1 + 1/(k-1).
Note: We have estimated worst-case value of YG relative to the unknown optimal value m*.
⧠

Borut Robič (January 10, 2023) 42

Algorithm H
• Idea. Algorithm G could add the most valuable object to YG even if its value

density was the smallest. Algorithm H uses algorithm G and corrects this.
• Algorithm H.

YH := YG ; // apply algorithm G to compute initial YH

xmax := the most valuable object in X ; // its value is pmax

if m(YH) < pmax

then YH := {xmax} ;
return(YG). // So, m(YH) = max{m(YG), pmax }.

• Time complexity of algorithm H is Θ(n log n). So H is a poly-time algorithm.
• Quality of suboptimal solutions YH

What is the performance quotient R(YH) = m*/m(YH)?
Theorem. R(YH) = m*/m(YH) < 2.

Proof. See my booklet. ⧠

• Comment. Since goal = max, m(YH) ⩽ m* holds. The relation R(YH) = m*/m(YH) < 2 from the
theorem implies m*/2 < m(YH) . Therefore, m*/2 < m(YH) ⩽ m*. In other words, algorithm H
guarantees to return YH whose value m(YH) is at 50% of the maximal (optimal) value m*.
Can we do better? Yes, by using different method of algorithm design, the dynamic programming.

Borut Robič (January 10, 2023) 43

PROBLEM: INDEPENDENT SET

• Definition. Find the largest group of guests such that no two guests know
each other (largest independent set of guests). Formally:

•

• Instance of the problem:
• Undirected graph G(V,E) … V set of guests; {u,v} ∊ E ⟺ u and v know each other

• Feasible solution: every set W ⊆ V such that u,v ∊V ⇒ {u,v} ∉ E … every independent set W
• Quality of a feasible solution W: m(W) = |W| … cardinality of W
• Goal: Find a feasible solution W* which maximizes m(W).

• INDEPENDENT SET is NP-hard optimization problem.
• Can we design an approximation algorithm for it?

• We will describe a poly-time r-a.a. for INDEPENDENT SET. Since goal = max, a feasible
solution W will be “good” if the performance quotient R = m*/m(W) is small, close to 1.

• We will describe one such algorithm A and consider some possible improvements to it.

Borut Robič (January 10, 2023) 44

(cont’d)

Algorithm A
• Idea.

1. Find in G the vertex x with smallest degree.
2. Add x to W.
3. Delete x and its neighbors from G together with all incident edges.
4. If G is not empty, go to 1.

• Algorithm A.
W := ∅ ;
while V ≠ ∅ do

x := vertex with smallest degree in G(V,E) ;
W := W U { x } ;
delete x, its neighbors, and all incident edges from G(V,E) ;

endwhile;
return(W).

• In each step, algorithm A greedily adds to W the guest who knows as few as possible
other guests.

Borut Robič (January 10, 2023) 45

(cont’d)

• Time complexity of algorithm A:
• The loop executes O(|V|) times.
• Search for x takes O(|V|).
• Adding x to W and deleting from G(V,E) takes O(|V|) time
• Overall, time complexity is Θ(|V|2). Hence, A is poly-time algorithm.

• Quality of suboptimal solutions W
How much is the performance quotient R(W) = m*/m(W)?
Theorem. For every k ∊ ℕ there is a (worst-case) instance of INDEPENDENT SET

for which R(W) = m*/m(W) > k.
Proof. See my booklet. Here we mention that the instance (graph G) is of the form

●
a ● Lp Kp

● vertex a is linked with every vertex in Lp

Lp … p vertices, completely unconnected
Kp … p vertices, completely connected ⧠

Intuitively. Algorithm A may return arbitrarily bad sub-optimal solutions W.
(The reasoning is very much similar to that for the problem KNAPSACK.)

Borut Robič (January 10, 2023) 46

(cont’d)

• Such pathological, worst-case graphs are relatively rare. For this reason the
above theorem does not tell us how algorithm A behaves on average.

• Questions. Can we tell anything about the average quality of W? Can we use
some property of G(V,E) that will allow us to find more about the quality of W?

• Some answers.
Definition. The density 𝛿 of a graph G(V,E) is defined as 𝛿 = |E|/|V|.
Theorem. The quality m(W) is bounded below by density of G(V,E):

|V|/(2𝛿 + 1) ⩽ m(W).
Proof. See my booklet. ⧠
Intuitively. Theorem tells us that m(W) is not always arbitrarily small. For example, for sparse
graphs with, say 𝛿 = 3, m(W) is at least |V|/7.

With 𝛿 we can deduce a relation among m(W), m* and 𝛿:
W is feasible solution ⇒ m*/(𝛿 +1) ⩽ m(W)

We can also deduce a relation among m(W), m* and dmax (max. degree in G):
W is feasible solution ⇒ m*/(dmax +1) ⩽ m(W)

Example. if dmax = 3, then m*/4 ⩽ m(W).

Borut Robič (January 10, 2023) 47

PROBLEM: TRAVELING SALESPERSON (TSP)

• Definition. Cities c1,c2,…,cn are connected by roads of lengths di,j ∊ ℝ+ U {∞}.
A person must start in c1, visit every other city exactly once, and return to c1.
In what order must he visit the cities to make a shortest possible cycle?
Formally:

•

• Instance of the problem:
• {c1,c2,…,cn } … set of n cities
• D = (di,j)nxn … matrix of distances di,j from ci to cj , where di,j = ∞ ⟺ ci ,cj are not connected
• Feasible solution: any permutation p = (ci1, ci2 ,…, cin) of the cities

• Quality of a feasible solution p: m(p) = the length of the cycle ci1 → ci2 → … → cin → ci1 .
• Goal: Find a permutation p* that minimizes m(p).

• TSP is NP-hard optimization problem.
• Can we design an approximation algorithm for it?

• We try with the following intuitively appealing algorithm A.

Borut Robič (January 10, 2023) 48

(cont’d)

Algorithm A
• Idea.

1. Start in c1.
2. In each step, move to the nearest unvisited city.
3. If all cities are visited, move to c1 .

• Algorithm A.
p := (c1) ;
for r :=1 to n-1 do

(cir , ci(r+1)) := shortest edge from cir to an unvisited neighbor;
p := p U {ci(r+1)}

endfor;
return(p).

• In each step, algorithm A greedily adds the nearest unvisited city to the end of
the currently constructed path.

Borut Robič (January 10, 2023) 49

cir

c1

cir+1

ci2 ci3

(cont’d)

• Time complexity of algorithm A:
• The loop executes n-1 times.
• The body of the loop takes O(n) time.
• Overall, time complexity is O(n2). So A is a poly-time algorithm.

• Quality of suboptimal solutions p
At each city, the salesperson picks the nearest unvisited city. This greediness may revenge in the last
step, when he must return to c1 via the only road connecting cin to c1. Since the length of this road
can be arbitrarily large (depending on the instance), it can make an arbitrarily large contribution to the
length of the constructed shortest path c1 → ci2 → … → cin.

Theorem. For every k∊ℕ there is an instance of TSP such that m(p) ≥ km*.
Proof. See my booklet. ⧠

Intuitively. Algorithm A may return arbitrarily bad suboptimal solutions p.

Borut Robič (January 10, 2023) 50

c1

ci2 ci3

cin cin-1

(cont’d)

We must find a better a.a. for TSP – if it exists at all. Does it? Is TSP ∊ APX?
Let us make a hypothesis ℋ ≡ TSP ∊ APX and see what ℋ implies.

ℋ ⇒ ∃ r-a.a. H with r < ∞ for TSP. Then:
• Let G(V,E) be an arbitrary undirected graph with V = {c1,c2,…,cn} and let di,j = 1 if (ci,cj)
∊ E, and di,j = r|V| if (ci,cj) ∉ E. Applying the algorithm H, we obtain a suboptimal
solution p, for which m(p) ≥ |V|. (Why? Exercise.)

• There are two possibilities for m(p) ≥ |V|: (a) m(p) = |V|, and (a) m(p) > |V|.
• We can show: (a) ⇒ G is Hamiltonian; and (b) ⇒ G is not Hamiltonian. (How? Exercise.)

• So H is a decision algorithm for the problem HAMILTONIAN GRAPH (= “Is graph G Hamiltonian?”).

• In addition, H is a poly-time algorithm (since it is r-a.a. due to ℋ).
• But the decision problem HAMILTONIAN GRAPH is known to be NP-complete!
• It follows that P = NP.

We found that ℋ ⇒ P = NP.
• That is: P ≠ NP ⇒ ¬ℋ, i.e. P ≠ NP ⇒ TSP ∉ APX. And we currently believe that P ≠ NP.

Therefore: Since we believe that P ≠ NP, we believe that TSP has no r-a.a. with r < ∞.

If P ≠ NP, there exist non-approximable NP-hard problems!

Borut Robič (January 10, 2023) 51

Focusing on Subproblems
Idea of the Method
• Since it is likely that there exist non-approximable NP-hard problems, we need

to find some other way to deal with such problems.
• Sometimes, an additional restriction imposed upon such a problem P may turn

the problem P into an approximable one.
• The obtained problem P’ is a subproblem of the original, more general P.
• If the restriction is not too severe, the new problem P’ may still be of high

practical importance.
• For example, a problem P which can be dealt with in this way is the TSP.

The subproblem P’ of P that we describe in the following is the METRIC TSP.

Borut Robič (January 10, 2023) 52

PROBLEM: METRIC TRAVELING SALESPERSON (∆TSP)

• Definition. The problem ∆TSP is defined as TSP + two additional restrictions:
symmetry (A→B and B→A are equally long) and triangle inequality (A→C→B is
at least as long as A→B), where A,B,C are any three cities of TSP.
Formally:
• Instance of the problem:

• {c1,c2,…,cn } … set of n cities
• D = (di,j)nxn … matrix of distances di,j from ci to cj , where di,j = ∞ ⟺ ci ,cj are not connected
• di,j = dj,i and di,k + dk,j ≥ di,j , for all i,j,k … symmetry and triangular inequality
• Feasible solution: any permutation p = (ci1, ci2 ,…, cin) of the cities

• Quality of a feasible solution p: m(p) = the length of the cycle ci1 → ci2 → … → cin → ci1 .
• Goal: Find a permutation p* that minimizes m(p).

• ∆TSP is a subproblem of TSP (if an algorithm solves TSP, then it also solves ∆TSP).

• ∆TSP is known to be NP-hard optimization problem.

• Can we design an approximation algorithm for this subproblem of TSP?
Yes, we will describe two such algorithms, denoted by B and C.

Borut Robič (January 10, 2023) 53

(cont’d)

Algorithm B
• Idea.

1. In G(V,E,d), construct a minimum spanning tree T.
If m(T) := “length of T”, then m(T) < m(p*).
Proof. If we delete an arc from p*, we obtain a spanning tree T’,
whose length is at least m(T): m(T) ⩽ m(T’) < m(p*). ⧠

2. From a node of T construct a traversal S of T,
such that each edge of T is traversed twice.

If m(S) := “length of S, then m(S) = 2m(T) < 2m(p*).
(S is not a feasible solution to ∆TSP, not Hamiltonian)

3. Construct from S a Hamiltonian cycle H in G
by passing over every previously visited node.

(H is a feasible solution to ∆TSP.)
Due to ∆-inequality: m(H) ⩽ m(S) < 2m(p*).

• Algorithm B is poly-time algorithm (steps are polynomial).

• Summary: Algorithm B is a 2-a.a. for ∆TSP.
• Question: Can we do better? Yes, this is algorithm C.

Borut Robič (January 10, 2023) 54

c1

T

c2

c3 c4

c5 c6 c7 c8
c1

S

c2

c3 c4

c5 c6 c7 c8
c1

H

c2

c3 c4

c5 c6 c7 c8

c1 G c2

c3 c4

c5 c6 c7 c8

(cont’d)

Algorithm C (Christofides)
• Idea.

• In G(V,E,d), construct a minimum spanning tree T.

Fact : Any graph has even number of nodes of odd degrees.
Let Vodd := set of nodes of T of odd degree. Then |Vodd | = 2k.

Example: In our T (see figure), |Vodd | = |{c3,c4,c5,c6,c7,c8.}| = 6.

Definiton. A matching in Vodd is any partition M of Vodd into
disjunct pairs {ci1 , cj1}, {ci2 , cj2}, …, {cik , cjk}. The weight of a
matching M is defined to be w(M) = di1,j1 + di2,j2 + …+ dik,jk ,
the sum of the distances associated to the pairs of M.

Example: In our T, a matching in Vodd is M = {{c3,c4}, {c5,c6}, {c7,c8}}.
Another matching is, for example, {{c3,c7}, {c4,c5}, {c6,c8}} .
There are |Vodd|(|Vodd|-1)/2 matchings in Vodd . (Prove it.)

A minimal matching M* in Vodd is the one with minimal weight.
Fact: M* in Vodd can be found in polynomial time in |Vodd|.

• Construct a minimal matching M* in Vodd .

Let minimal matching be M* = {{c1 , c2}, {c3 , c4}, …, {c2k-1 , c2k}}.
(We renamed the cities to simplify notation.)

Borut Robič (January 10, 2023) 55

c1

T

c2

c3 c4

c5 c6 c7 c8

c1 G c2

c3 c4

c5 c6 c7 c8

c1

 M*

c2

c3 c4

c5 c6 c7 c8

(cont’d)

• Add the pairs (edges) of M* to the tree T.

Denote the resulting graph by T + M*.
Note: every node of T + M* has even degree.
Fact: If all nodes of a graph have even degrees, then the
graph is Eulerian (has a cycle traversing each edge exactly once.)
Therefore, the graph T + M* is Eulerian.

• Construct an Eulerian cycle S in T U M*.

But S is not Hamiltonian cycle, not a feasible solution to ∆TSP.

• Construct from S a Hamiltonian cycle H in G by passing
over every previously visited node (as in algorithm B).

⧠

• Theorem. m(H) < 1.5 m(p*).
Algorithm C returns suboptimal solution that is at most 50%
larger than the minimal (optimal) one. The algorithm is also
poly-time (all steps are polynomial).

• Summary: Algorithm C is a 1.5-a.a. for ∆TSP.

Borut Robič (January 10, 2023) 56

c1

S

c2

c3 c4

c5 c6 c7 c8

c1

T U M*

c2

c3 c4

c5 c6 c7 c8

c1

H

c2

c3 c4

c5 c6 c7 c8

Sequential (iterative) Partitioning

• Some optimization problems have feasible solutions that are partitions of
some set. We call such optimization problems partitioning problems.

• There are several methods for solving partitioning problems. Here we are
particularly interested in the method called the sequential partitioning.

Borut Robič (January 10, 2023) 57

Partitioning problems

• Definition. A partition of a set S= {x1,x2,…,xn }
is a set P = {S1,S2,…,Sk}, such that
• 1 ⩽ k ⩽ |S|
• Si ≠ ∅ and Si ⊆ S, for i = 1,2,…,k
• S1 ⋃ S2 ⋃ …⋃ Sk = S
• Si ⋂ Sj ≠ ∅, for i,j = 1,2,…,k.
Si is called the component of the partition P.

• A partition P of S is completely defined by specifying a surjective function
f : S → {1,2,…,k}, such that f -1(i) = Si , i = 1,2,…,k; that is, f maps each element of
S to the index of a component of P.

Borut Robič (January 10, 2023) 58

S1

S

1 2 i k

S2 Si

Sk

The Method of Sequential Partitioning

• The Method
1. Sort S // Let (xi1,xi2,…,xin) be sorted S
2. Run through S assigning each xi to some

component of P by using some criterion.

• Algorithm Seq_Part (S)
instance: S = {x1 , x2 , …, xn}
output: partition function f : S → {1,2,…,k}
begin

for i = 1 to n do f(xi) := 0;
Sort S; // sort S into the order (xi1 , xi2 , …, xin) depending on the problem
for i := i1, i2 ,…, in do

if xi belongs to Sℓ // xi should be in Sℓ according to the criterion that depends on the problem
then f(xi) := ℓ

endfor;
return f

end.
Clearly, S must be known in advance to sort it. We say that the above algorithm is an offline. If S were
not known in advance (if xi are arriving one by one in succession), S couldn’t be preprocessed, and the
algorithm would lack useful information about S as a whole. We say that the algorithm would be online.

Borut Robič (January 10, 2023) 59

x1

S

xi1

S2 SkS1

xi2
xij

xin

x9

x2 x5

x8
x4

x7

x6
x3

sort S

xi3
xij+1

xij-1

assign

Sl

PROBLEM: TASK SCHEDULING

• Definition. There are n tasks, each of known length (duration), to be completed,
and p identical processors. Allocate the tasks to the processors so that all tasks
will complete as soon as possible. Formally:
• Instance of the problem:

• T = {x1,x2,…,xn } … set of tasks
• ℓi … length (duration, processing time) of task i
• p … number of processors
• Feasible solution: any function 𝜋 : T→ {1,2,…,p} … which allocates task x to processor 𝜋(x)

• Quality of a feasible solution 𝜋: m(𝜋) = … maximal allocated load to a processor

• Goal: Find a function 𝜋* that minimizes m(𝜋).

• TASK SCHEDULING is NP-hard optimization problem.

• With the method of sequential partitioning we design two polytime a.a.’s for the problem:
the LS (list scheduling) algorithm and the LPT (largest processing time) algorithm.

Borut Robič (January 10, 2023) 60

<latexit sha1_base64="yK9+Y/rytid1fKN5RiUIN05Bu9Q=">AAACL3icbVDLSgMxFM3UV62vqks3wVbQTZkRfGyEoiAuK9gHdMqQSW/btMnMmGTEMvSP3Pgr3Ygo4ta/MH3gqx4IHM45l9x7/IgzpW372UrNzS8sLqWXMyura+sb2c2tigpjSaFMQx7Kmk8UcBZAWTPNoRZJIMLnUPV7FyO/egdSsTC40f0IGoK0A9ZilGgjednLvCvIvcuZYFp5ieNyuFWcBBqzbxoNsKti8ZVyI7Z/73UPztjABc69bt7L5uyCPQaeJc6U5NAUJS87dJshjQUEmnKiVN2xI91IiNSMchhk3FhBRGiPtKFuaEAEqEYyvneA94zSxK1QmmfWG6s/JxIilOoL3yQF0R311xuJ/3n1WLdOGwkLolhDQCcftWKOdYhH5eEmk0A17xtCqGRmV0w7RBKqTcUZU4Lz9+RZUjksOMeFo+vDXPF8Wkca7aBdtI8cdIKK6AqVUBlR9ICG6AW9Wo/Wk/VmvU+iKWs6s41+wfr4BBjsqk0=</latexit>

max
16i6p

P
⇡(xj)=i

`j

Algorithm LS (List Scheduling)
• Idea.

1. Algorithm will be online (there will be no preprocessing (e.g. sorting) of the whole T)
2. Each arrived task is allocated to the processor with the currently smallest load

• Algorithm

• Time complexity of LS: LS is a poly-time algorithm (loop executes n times; body takes 𝒪(n) time,).

• Quality of suboptimal solutions 𝜋LS
Theorem. (Proof. See booklet. ⧠)
Intuitively. For p>1, LS returns 𝜋LS such that T completes in time which is ⩽100% larger than m*.

In other words, LS is a polytime -a.a. for the TASK SCHEDULING problem.

Borut Robič (January 10, 2023) 61

<latexit sha1_base64="qkWUMlOgJMthgErQwFkHw179cck=">AAAEUXiclVNLbxMxEHa3AUoKNIUjlxENUlFDlI3EQ0VIBS4cECrQtJXqsLK9TmLFa69sL6Ss9i9ygBP/gwsHEN40Cdu0F0aydjTP75udoakU1nU6P1aC1dqVq9fWrtfXb9y8tdHYvH1odWYY7zEttTmmxHIpFO854SQ/Tg0nCZX8iI5flf6jT9xYodWBO015PyFDJQaCEedN0WYwxJQPhcodoVSoYQGTCX5efYDHQso6AOSYDuCFHGoj3CiBNx/aBeAdjBc+oawjivHdApoH4DMlNYRxmERhaxJ1W1jG2lmvKsBm6mo+gybmUkYCC4UT4kaU5u+LjzstEL5A2FokqTI0rUS9LVoplhxUEyoQdObSzHkAg0yxkqKvn4ooxwnVkxxbZkTqrPjCsXCeQVHswgFgpxdYKy3TOchqg+m0/vGemwfaeNICdpdAn3ljXcxw+Jbbk0g8KAM7ntL/Vqn0BWiOm2VoajTj1moDn/2PAZYZw5WTp2ATIiW3DqQmcaUXXALGl8IPz6PhKi4BLYM03GVGVQhVM+eJRbuO/WexVvWosdVpd6YCF5VwpmyhmexHjW841ixLPBUmibUnYSd1/ZwYJ5jkRR1nlqeEjcmQn3hVkYTbfj69iALue0tcjtM/5WBqrWbkJLH2NKE+slwnu+wrjZf5TjI3eNrPhfJLxhU7azTIJPgNKs8LYmE4K2cfC+J3zWMFNiJ+i5w/wnII4TLli8phtx0+bj96193aezkbxxq6i+6hbRSiJ2gPvUb7qIdY8DX4GfwO/qx+X/1VQ7XgLDRYmeXcQeektv4XLMpQsQ==</latexit>

Algorithm LS.
instance: T = {x1, x2, . . . , xn}; `i 2 R+, i = 1, 2, . . . , n; p 2 N, p  n
output: function ⇡LS : T ! {1, 2, . . . , p}
begin

for i := 1, 2, . . . , n do ⇡LS(xi) := 0;
for i := 1, 2, . . . , n do

k := processor with currently smallest load;
⇡LS(xi) := k

endfor;
return ⇡LS

end.

<latexit sha1_base64="pqi4kdYgXrEGVxY6xDP7zE/Tfuk=">AAACHXicbVDLSsNAFJ3UV62vqEs3g61QBUtSfC2Lbly4qGgf0MQwmU7aoZOHMxOhhP6IG3/FjQtFXLgR/8ZpmoW2Hhg4nHMuc+9xI0aFNIxvLTc3v7C4lF8urKyurW/om1tNEcYckwYOWcjbLhKE0YA0JJWMtCNOkO8y0nIHF2O/9UC4oGFwK4cRsX3UC6hHMZJKcvSjkl+2IuokVzejfWgxci8YCiQsVw8T0wrVKIyUkYbuDiaxkqMXjYqRAs4SMyNFkKHu6J9WN8SxTwKJGRKiYxqRtBPEJcWMjApWLEiE8AD1SEfRAPlE2El63QjuKaULvZCrpzZL1d8TCfKFGPquSvpI9sW0Nxb/8zqx9M7shAZRLEmAJx95MYMyhOOqYJdygiUbKoIwp2pXiPuIIyxVoQVVgjl98ixpVivmSeX4ulqsnWd15MEO2AVlYIJTUAOXoA4aAINH8AxewZv2pL1o79rHJJrTsplt8Afa1w/8/p/+</latexit>

m(⇡LS) 6 (2� 1
p)m(⇡⇤

LS)

<latexit sha1_base64="YBqUki7WWVoHusY01n2X3w4FZ1k=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CbZCXVhmCj6WRTcuK9gHtEPJpGkbmkmGJFMoQ//EjQtF3Pon7vwb03YWWj0QOJxzLvfmhDFn2njel5NbW9/Y3MpvF3Z29/YP3MOjppaJIrRBJJeqHWJNORO0YZjhtB0riqOQ01Y4vpv7rQlVmknxaKYxDSI8FGzACDZW6rluqVy9SP2utCEUz85LPbfoVbwF0F/iZ6QIGeo997PblySJqDCEY607vhebIMXKMMLprNBNNI0xGeMh7VgqcER1kC4un6Ezq/TRQCr7hEEL9edEiiOtp1FokxE2I73qzcX/vE5iBjdBykScGCrIctEg4chINK8B9ZmixPCpJZgoZm9FZIQVJsaWVbAl+Ktf/kua1Yp/Vbl8qBZrt1kdeTiBUyiDD9dQg3uoQwMITOAJXuDVSZ1n5815X0ZzTjZzDL/gfHwDN9OSHA==</latexit>

(2� 1
p)

Can we do better? Yes.

Algorithm LPT (Longest Processing Time First)
• Idea.

1. Sort all tasks in T by their decreasing lengths (the algorithm will be offline)
2. Prevent the situation possible in LS where xn of large ℓn could spoil a good allocation

• Algorithm

• Time complexity of LPT: LPT is a poly-time algorithm with time complexity 𝒪(n2).
• Quality of suboptimal solutions 𝜋LPT

Theorem. (Proof. See booklet. ⧠)
Intuitively. If p>1, T allocated by 𝜋LPT requires ⩽ 33% more time to complete than necessary.

LPT is a polytime -a.a. for the TASK SCHEDULING problem.

Borut Robič (January 10, 2023) 62

<latexit sha1_base64="9+fT7ceYDoB0RoZ4T4b/n94w+78=">AAAExXicdVNbb9MwFM7WAqPcNnjk5YgFadNK1VTiok1IYzzAA0IDdRdpLpHjuK1Vxw62MzpFEf+RN8Sf4SS9LNvAkpXjc853/J0vx1EqhXXd7u+V1Ubz1u07a3db9+4/ePhofePxsdWZYfyIaanNaUQtl0LxIyec5Kep4TSJJD+JJu/L+Mk5N1Zo1XcXKR8kdKTEUDDq0BVurP4BIBEfCZU7GkVCjQqYTsnb+gYyEVK2ACAn0RDeyZE2wo0T+HTY7xRAdghZBoWyjirGdwvw+4BQGRnKOEzDoD0Ne20iY+0smgqIqUL+HviESxkKItCZUDeOovxr8W2nDQIrBO0lSmEu+Gk973PRTonkoHyosdCZSzOHHGCYKVZ2inekIsyRcbELfSBOL6nVLkgXnOrFKnUu21y4h9pgjwJ2r1GcRWNd1K7cmoZiu8zsYgfLMlYbhyr5KBrS8TEpF2FQtKtvr1iUhOqsim0fEeDG1M0Fq7LJiMPi1JudKhjUA6rw9/7LHqu0xeWvwexaD7WuUfqJXwJSoxm3yB5+4BgAy4zhyskLsAmVklsHUtO41ij8SwqsRV5cJcVVXPKqISu34S4zqq5nHbpAFh08EzSWg9wK1ze7nW614KYRzI1Nb74Ow/VfJNYsS7AdJqm1Z0E3dYOcGieY5EWLZJanlE3oiJ+hqWjC7SCvXmEBz9ETl8LiVg4qbx2R08TaiyTCzHJ47fVY6fxX7CxzwzeDXCgcaa7Y7KJhJgGHpnzSEAvDWal/LCjDlykYsDHFOXb48EsRgust3zSOe53gVefll97m/sFcjjXvqffM2/IC77W37330Dr0jjzUOGuPG94ZpfmgmTdc8n6WurswxT7wrq/nzL7MTc1s=</latexit>

Algorithm LPT.
instance: T = {x1, x2, . . . , xn}; `i 2 R+, i = 1, 2, . . . , n; p 2 N, p  n
output: function ⇡LPT : T ! {1, 2, . . . , p}
begin

for i := 1, 2, . . . , n do ⇡LPT (xi) := 0;
sort T into (xi1 , xi2 , . . . , xin) so that `i1 � `i2 � . . . � `in ;
for i := i1, i2, . . . , in do

k := processor with currently smallest load;
⇡LPT (xi) := k

endfor;
return ⇡LPT

end.

<latexit sha1_base64="1kper7O+HIWK/EVldmfHcPbh/U0=">AAACKXicbVDLSsNAFJ3UV62vqEs3g61QBUtSn8uiGxcuKvQFTQyT6bQdOnk4MxFKyO+48VfcKCjq1h9xmmah1gMDh3PPYe49bsiokIbxoeXm5hcWl/LLhZXVtfUNfXOrJYKIY9LEAQt4x0WCMOqTpqSSkU7ICfJcRtru6HIyb98TLmjgN+Q4JLaHBj7tU4ykkhy9VvLKVkid+LreSPahxcidYMiXsBwfW4FKwqPkMDYzGipL6r89yBIlRy8aFSMFnCVmRoogQ93RX6xegCOP+BIzJETXNEJpx4hLihlJClYkSIjwCA1IV1EfeUTYcXppAveU0oP9gKunlkzVn4kYeUKMPVc5PSSH4u9sIv4360ayf27H1A8jSXw8/agfMSgDOKkN9ignWLKxIghzqnaFeIg4wlKVW1AlmH9PniWtasU8rZzcVIu1i6yOPNgBu6AMTHAGauAK1EETYPAAnsAreNMetWftXfucWnNaltkGv6B9fQMYyaSw</latexit>

m(⇡LPT) 6 (43 � 1
3p)m(⇡⇤

LPT)

<latexit sha1_base64="SMb0xSzicmE/ukLHhclfjpTyuhE=">AAACA3icbVDLSgMxFM3UV62vUXe6CbZCXVhm6nNZdOOygn1AO5RMmmlDM8mQZIQyDLjxV9y4UMStP+HOvzFtZ6HVA4HDOedyc48fMaq043xZuYXFpeWV/GphbX1jc8ve3mkqEUtMGlgwIds+UoRRThqaakbakSQo9Blp+aPrid+6J1JRwe/0OCJeiAacBhQjbaSevVcqJ6ddYSLwJD1O3IxG6VGpZxedijMF/EvcjBRBhnrP/uz2BY5DwjVmSKmO60TaS5DUFDOSFrqxIhHCIzQgHUM5ConykukNKTw0Sh8GQprHNZyqPycSFCo1Dn2TDJEeqnlvIv7ndWIdXHoJ5VGsCcezRUHMoBZwUgjsU0mwZmNDEJbU/BXiIZIIa1NbwZTgzp/8lzSrFfe8cnZbLdausjryYB8cgDJwwQWogRtQBw2AwQN4Ai/g1Xq0nq03630WzVnZzC74BevjG2WJlhg=</latexit>

(43 � 1
3p)

PROBLEM: BIN PACKING

• Definition. Allocate given objects of known sizes to minimum number of bins of
equal capacities. Formally:
• Instance of the problem:

• T = {x1,x2,…,xn} … set of objects
• ℓi ∊ (0,1] … normalized sizes of objects
• 1 … capacity of each bin

• Feasible solution: 𝜋 : T→ ℕ such that , for j = 1,2, …

• Quality of a feasible solution 𝜋: … the number of bins used by 𝜋

• Goal: Find a function 𝜋* that minimizes m(𝜋).

• BIN PACKING is NP-hard optimization problem.

• Using the method sequential partitioning we will design several polytime a.a.’s for the
BIN PACKING problem: the NF, FF, FFD, and BFD algorithm.

Borut Robič (January 10, 2023) 63

<latexit sha1_base64="QzrTN3OrRGEULkM5QK4XNVdMy4o=">AAACR3icbZBPTxRBEMV7VlRc/7Dq0UuHxWS5bGZIQC8kRC8eMXGBZHud9PTUQEF3z9hdY9hM5tt58cqNr+DFg8Z4pHeZA4KVdPLyXlWq+pdVGj3F8WXUu7dy/8HD1Uf9x0+ePlsbPH9x4MvaKZioUpfuKJMeNFqYEJKGo8qBNJmGw+zs/SI//ArOY2k/0byCmZHHFgtUkoKVDj5vCIJzaoQzXJcyb0enm1x4kurMgW66kNDOeQ5F2za7bYhrIzQaJJ82osLReYqbu6etAK1T5ELDF6+lJZ5spINhPI6Xxe+KpBND1tV+OrgQealqA5aUlt5Pk7iiWSMdodLQ9kXtoQrHyWOYBmmlAT9rlhxa/jo4OS9KF15Yv3RvTjTSeD83Weg0kk787Wxh/i+b1lS8nTVoq5rAqutFRa05lXwBlefoQJEOjFAqh+FWrk6kk4oC+n6AkNz+8l1xsDVOdsbbH7eGe+86HKvsFVtnI5awN2yPfWD7bMIU+8Z+sF/sd/Q9+hn9if5et/aibuYl+6d60RXyELMW</latexit>

load(j)
def
=

P
⇡(xi)=j

`i 6 1
<latexit sha1_base64="oN/P4ALRSQneBnXbdF6lfHHTZZI=">AAACNnicbVBNTxsxEPXSD2igJcCxF6sBKVyi3Ui0XJAQXHpBAokAUjZaeZ1ZGGF7V/YsSrTaX8WF39EbFw5FiCs/ASfk0AIj2Xp+82Y889JCoaMwvA3mPnz89Hl+4Utjcenrt+XmyuqJy0sroSdzlduzVDhQaKBHSArOCgtCpwpO08v9Sf70CqzD3BzTuICBFucGM5SCPJU0D9Z1Oy5wk+/wWJc8diTkpQVVxQQj8jeaMR9CVtfVTu0lYhQr1EguqUYJ8hgNP659g7Z/ba4nzVbYCafB34JoBlpsFodJ8088zGWpwZBUwrl+FBY0qIQllArqRlw6KPxE4hz6HhqhwQ2q6do13/DMkGe59ccQn7L/VlRCOzfWqVdqQRfudW5Cvpfrl5RtDyo0RUlg5MtHWak45XziIR+iBUnKG4NCWvSzcnkhrJDknW54E6LXK78FJ91O9LOzddRt7e7N7Fhg39kP1mYR+8V22W92yHpMsmt2y/6y++AmuAsegscX6Vwwq1lj/0Xw9AzWuawJ</latexit>

m(⇡) = µ
def
= max

xi2T
⇡(xi)

Algorithm NF (Next Fit)
• Idea.

1. Algorithm will be online (there will be no preprocessing (e.g. sorting) of T)
2. Allocate x1 to 1st bin; each next object allocate to the last used bin if there is

enough space for the object, otherwise allocate the object to a new, empty bin.

• Algorithm

Borut Robič (January 10, 2023) 64

<latexit sha1_base64="kOfA1OeTOS5WsploZzeiD43+d7k=">AAAHY3icnVXfbxM5EF44mkC4uxaOtxPSHN2TihpCUgkOFSHxQ0L3hDipBaQ6ynm9k8St117ZXki02n/y3u7tXvg/mN1sQ340VJyjVbwzHn/ffDNrR6mSzne7/165+sO1rUbz+o3WzR9/+nl759btd85kVuCxMMrYDxF3qKTGYy+9wg+pRZ5ECt9HZ69K//uPaJ00+shPU+wnfKTlUAruyTS4tTVlEY6kzj2PIqlHBUwm7NnFD7AzqVQLchYN4YUaGSv9OIE3rzsFsH3Gao/UznMt8LCA8AieAVOR5QJhMui1J4ODNlOx8Y6mGpitXOFTCBkqNZDApIa9brvXb4Ok2F57vl6HMIcwmU8zTwAUl8pBzpLITHLmpZ4y6YlRURzCETBv5ugLO7EkuzDknE0bPo3RYguWR8g8TnzObALK8LjYO71fZvfb/OeyhCmZSO9o+w209iYDWYadFnVQnbYihiEMjYXwtMr7Eq4LYlT1O69AxXNDDBzSxqT1dw32NzwsiT4E7kEhdx6MRqBeAelAI8YYA9TQFR9KgiovZ2gzkzdk0fVLbBbI1jFyWKzruymP+wD7sCzcElGRWYvaqymokm5JdaMmIQiugQuBqYeQihMucqvZ+THqYnOrzWpK6W4G+bawShn6HrHGp6alOFglgcph8X21K1EWk4HFhvmKL7W3Js7oI+FU0E+ASeqnlWyr4XBJd2307ZeN9xUx4WdYJrlSKVgH+9+SXyIve7CuC+q4IPuDue/cWnb006Uet+gz+62eCNc2KTotRn/zg7Y12NntdrrVgPVJr57sBvV4O9j5h8VGZAkpJkgvd9Lrpr6fc+ulUFi0WOYw5eKMj/CEppon6Pp5dUcU8DtZ4uqAGRpNypfWxYicJ85Nk4hWJtyP3aqvNF7kO8n88Ek/l5oOZNRiBjTMVKlzeeFALC2KssSx5IJuDClAjDkdtJ6upVKE3mrK65N3B53e486jvw52n7+s5bge/BrcC/aCXvBH8Dz4M3gbHAdi679Go7Hd2Gl8bt5s3m7emS29eqWO+SVYGs27XwBd6jgv</latexit>

Algorithm NF.
instance: T = {x1, x2, . . . , xn}; `i 2 (0, 1], i = 1, 2, . . . , n
output: ⇡NF : T ! {1, 2, . . . , µNF}, where load(j) =

P
⇡NF(xi)=j

`i  1 for j = 1, . . . , µNF

begin
µNF := 1; // at least one bin is needed
for i := 1 to n do

if load(µNF) + `i  1 // currently last bin µNF can accept xi

then ⇡NF(xi) := µNF // allocate xi to it
else

begin // introduce a new empty bin
µNF := µNF + 1; // make it currently last
⇡NF(xi) := µNF // allocate xi to it

end
endfor;
return ⇡NF

end.

(cont’d)

• Time complexity of NF
NF is a poly-time algorithm (loop executes n times; loop-body takes 𝒪(1) time).

• Quality of suboptimal solutions 𝜋NF
Theorem. m(𝜋NF) ⩽ 2m(𝜋*) (Proof. See booklet. ⧠)

Intuitively. NF returns allocation 𝜋NF which uses ⩽100% more bins than it would be necessary.
Comment. The upper bound is tight: there are instances for which m(𝜋NF) = 2m(𝜋*).

• A drawback of algorithm NF
NF tries to allocate only to the last bin. Why not try to allocate to some previous bin?

.

Borut Robič (January 10, 2023) 65

Algorithm FF (First Fit)
• Idea.

1. This algorithm too will be online (no preprocessing of the whole T).
2. Allocate x1 to 1st bin; allocate each next object to the first used bin that can accept it.

If there is no such bin, allocate the object to a new bin. (Eliminates the drawback of NF.)

• Algorithm

Borut Robič (January 10, 2023) 66

<latexit sha1_base64="D42pMLXVqoI3C3OOTJk1QgIyzIo=">AAAHiniclVVtbxNHED6g2NSlbaAf+2VorlKqOMaOVGgTIdEXoX6kUgJIWcvs7Y3tdfbF2t0rtk73X/hNfOPfMHc+O3YSE7qWz+uZnZ1nnnn2Npkq6UO3+/HW7Ttf3W00733d+ub+t999v/Pg4StvMyfwVFhl3ZuEe1TS4GmQQeGbqUOuE4Wvk/O/Sv/r/9B5ac1JmE+xr/nIyKEUPJBp8ODue5bgSJo88CSRZlTAbMaeXf8Fdi6VakHOkiH8oUbWyTDW8OJFpwC2z1jtkcYHbgQeFRCfwDNgKnFcIMwGvfZscNhmKrXB09QAc5UrPoaYoVIDCUwa2Ou2e/02SIrttVfrTQyrFDYL0yxQAoqbykHOdGJnOQvSzJkMhKgojuAEWLCr7Gs7MZ1dG7JE04Z3Y3TYgs0Rs4CzkDOnQVmeFnuTX8rqHq0+PtNMSS2Dp+23wNqbDWQZNinWAh8ti1eEM4ahdRBPqupvQLxGSdXFZR8qtFti4Ig2Jsa/dLC39HhconwMPIBC7gNYg0ByAenBIKaYQp22wkIFUO/lItPCFCxZTP0ntWtA6xg5LEoRzEjyHiYkg//fODiCa1q0D5vsLkqqC/JWI2Se8JfVxJMYBDcQ+DlCTJ2K12HWQMMYTbFdd4sGU+UXULzmSiGx5jMxLpMU8RailzQrZemALjGQiofSLeNLoHAZFCqPxRe3dJVxvThY19EFFmmCs2lG7HJq9TtAPQ3zBYjL8XCD6rb69ktBXqR0qFEn6ID8JDCROYcmqDmoUnobxddJb+zFtvPzOc5pDbCDqwyhSQuyH6x8S2sp++ONg+AwZO5zaomvbFJ0Wox+Vu/j1mBnt9vpVgOuTnr1ZDeqx8vBzgeWWpFp4kwQY/6s152Gfs5dkEJh0WKk9ykX53yEZzQ1XKPv59VVUsDP1WEo30BDawJU1vWInGvv5zqhlZqHsb/sK43X+c6yMPytn0tD7200YpFomKmS6PJeglQ6FGWTU8kFXSxSgBhzOtaBbq+ShN7lkq9OXh12ek86v/57uPv8z5qOe9GP0U/RXtSLnkbPo3+il9FpJBrNxkHjSeNp837zsPl783ix9PatOuaHaGM0//4E8RxC7g==</latexit>

Algorithm FF.
instance: T = {x1, x2, . . . , xn}; `i 2 (0, 1], i = 1, 2, . . . , n
output: ⇡FF : T ! {1, 2, . . . , µFF}, where load(j) =

P
⇡FF(xi)=j

`i  1 for j = 1, . . . , µFF

begin
µFF := 1; // at least one bin is needed
for i := 1 to n do

if 9j 2 {1, 2, . . . , µFF} : load(j) + `i  1 // some used bin j can take xi

then ⇡FF(xi) := smallest such j // allocate xi to first such bin
else

begin // introduce a new empty bin
µFF := µFF + 1; // remember it is currently last
⇡FF(xi) := µFF // allocate xi to it

end
endfor;
return ⇡FF

end.

(cont’d)

• Time complexity of FF
FF is a poly-time algorithm (the loop executes n times; loop-body takes 𝒪(n) time).

• Quality of suboptimal solutions 𝜋FF

Theorem. m(𝜋FF) ⩽ 1.7 m(𝜋*) + 2 (Proof. See booklet. ⧠)

Intuitively. FF returns allocation 𝜋FF that uses ⩽70% more bins than necessary.
Comment. The upper bound is tight: there are instances for which m(𝜋FF) = 1.7 m(𝜋*).

• A drawback of algorithm FF
If the largest objects arrive at the end, it may happen that they cannot be allocated to
the used bins (but they could be allocated if the allocated objects were reallocated).

Borut Robič (January 10, 2023) 67

Algorithm FFD (First Fit Decreasing)
• Idea.

1. This algorithm will be offline (the whole T can be preprocessed, e.g. sorted).
2. Sort T = {x1 ,x2 , …, xn } by decreasing sizes ℓi .
3. Apply algorithm FF on the sorted T. (This eliminates the drawback of FF.)

• Algorithm

Borut Robič (January 10, 2023) 68

<latexit sha1_base64="IWOQzAX8FQpcIvEI+lkcMEiIqGI=">AAAIMnicnVVLbxs3EN6krZSqjzjtsZdJvQUcWFEkAX3ARoD0gSDHFLCTAKagcndHEmUuqZLcRsKCv6mX/pICPbSHFkWv/RGdXa3klWXZQSlISw1nON9883EZzaSwrtv9/dbtt95+p9G8827rvfc/+PDu3r2PXlidmRhPYy21eRVxi1IoPHXCSXw1M8jTSOLL6PzbYv3lT2is0OrELWY4SPlYiZGIuSPT8F7jGYtwLFTueBQJNfYwn7PHV3+BnQspW5CzaARfy7E2wk1SePr0u44HdshYtSSUdVzFeOQhPIHHwGRkeIwwH/ba82G/zWSinaWpAmbKpfAYQoZSDgUwoeCg2+4N2iAottde+6sQ1il05maZowQUNxPDnKWRnufMCbVgwhWQvD+CE2BOr9PXtmJpdnXMCk8bXk/QYAs2R8gczl3OTApS88QfTB8U9d1ff2yWMilS4SztvwvYwXwoiripr0XeX9UvCWkII20gnJYE3IS5RkvZylUvaFzAtdo46kZIzSFKQoKQi2HPt8tn31/0hP4q/yAEm8UTcBPuqs6U7myMP1rJlYOVrV+3lXvAtpPy4bGHClO4sxA4onJJCm862A/086jg7hEQToncOtAKgYQMwoJCTDBZ5S0JIlpJlKLIRPWQxEiOFe7iD0msdEt0jcQqVIx8QcWczqSFKcn0f+gKjuAKBR3CZu+XpVWFWZ0iZJbqKKoKpyHEXIHj5wgh6Sis46yQugkqf83BWOqPKKjJI+VSItFXtp2y+HAH4yu+pdT0DlmBIE2NhFnFF0jhMiqUFv0b93adsV4d1FV+gYUkbXSSEb2cev4aMJ25xRLE5Xi4SX+7Fw8LbV4kNZhiGqEBciCtxZkxqJxcgCxUuFF+lfbmduw84dfxTk7AHm6zhCrxZH+4XltZizNwvHEqDLrMXCuZcGsX32kxeqzvjdZwb7/b6ZYDtie9arIfVOP5cO9Xlug4S4m2mEizZ73uzA1ybpyIJfoWI9XPeHzOx3hGU8VTtIO8vPI8fFYeieItOdL0pimt9Yicp9Yu0og8U+4m9vJaYbxq7Sxzo68GuVB0vaCKl4lGmSyYLu5PSITBuOhzInhMF6CIIZ5wOtyObtmChN7lkrcnL/qd3hedz7/v7z/5pqLjTvBJ8GlwEPSCL4MnwbPgeXAaxI2fG781/mz81fyl+Ufz7+Y/S9fbt6qYj4ON0fz3PxROgzg=</latexit>

Algorithm FFD.
instance: T = {x1, x2, . . . , xn}; `i 2 (0, 1], i = 1, 2, . . . , n
output: ⇡FFD : T ! {1, 2, . . . , µFFD}, where load(j) =

P
⇡FFD(xi)=j

`i  1 for j = 1, . . . , µFFD

begin
sort T into (xi1 , xi2 , . . . , xin) such that `i1 > `i2 > . . . > `in ;
µFFD := 1; // at least one bin is needed
for i := i1, i2, . . . , in do

if 9j 2 {1, 2, . . . , µFFD} : load(j) + `i  1 // some used bin j can take xi

then ⇡FFD(xi) := smallest such j // allocate xi to first such bin
else

begin // introduce a new empty bin
µFFD := µFFD + 1; // remember it is currently last
⇡FFD(xi) := µFFD // allocate xi to it

end
endfor;
return ⇡FFD

end.

(cont’d)

• Time complexity of FFD
FFD is a poly-time algorithm (sorting takes 𝒪(n log n) time and FF takes 𝒪(n2) time).

• Quality of suboptimal solutions 𝜋FFD
Theorem. m(𝜋FFD) ⩽ 1.5 m(𝜋*) + 1 (Proof. See booklet. ⧠)
Intuitively. FFD returns allocation 𝜋FFD that uses ⩽ 50% more bins than necessary.
Comment. The upper bound is not tight. Actually, we know that 𝜋FFD is better that:

Theorem. (Proof. See booklet. ⧠)

Comment. This upper bound is tight. So, allocation 𝜋FFD uses ⩽22% more bins than necessary.

Borut Robič (January 10, 2023) 69

m(⇡FFD) 6 11
9 m(⇡⇤) + 4

Algorithm BFD (Best Fit Decreasing)
• Idea.

1. This algorithm is offline (the whole T will be sorted).
2. Sort T = {x1 ,x2 , …, xn } by decreasing sizes ℓi .
3. Put each new object into the used bin where the remaining capacity will be minimal,

if there is such bin; otherwise, use a new bin.
• Algorithm

Borut Robič (January 10, 2023) 70

<latexit sha1_base64="9DXmpttuR7Up3bCEfAuBhFWgBW0=">AAAIWHicnVbfb9s2EFZ/JZ73K+0e+3JZNCBFHNcysG5IUKDthmGPHZC0BULDo6SzTYeiPJJq7AnsH1lgD9u/spedZNmR4zgpRsMWdeTxvvvuI+lwIoWxnc7fd+7eu/9ga7vxWfPzL7786uudh4/emDTTEZ5GqUz1u5AblELhqRVW4ruJRp6EEt+G5z8V42/fozYiVSd2NsFewodKDETELZn6D7cUC3EoVG55GAo1dDCdsufXf4GdCymbkLNwAC/lMNXCjhJ49cvPbQfsgLFqSChjuYrwyIF/As+ByVDzCGHaD1rTfrfFZJxaQ10FTJdD/jH4DKXsC2BCwX6nFfRaIMg3aC3nKx+WIdLMTjJLAchvIvo5S8J0mjMr1IwJW0By7ghOgNl0Gb62FEuy630WeFpwMUKNTVhtPrM4tTnTCciUx25//KTIb3f5MVnCpEiENbT+JmD7074o/Mau5rm7yF8SUh8GqQZ/XBJwG+YaLWUpF7WgdgnXpNpSNXwqDlHiE4Rc9APXKp9dd1kTelXuiQ8mi0ZgR9xWlSmnsyH+YSRXFha2bt1WrgHrk5Tzjx1UmPyNicARpUtS+NTGfqefpwV3T4FwSuTGQqoQSMggDCjEGONF3JIgopVEKYpIlA9JjORY4S5eSGLltDitkVi5ioErqJjSnjQwJpn+D13BEVyjoANYrf08tSoxkyYImaE8iqz8sQ8RV2D5OYJPOvLrOCukdoTK3bAx5vojCmBcg/PhYiSo5IlQpN8/0XxwELDdQ0KxhnhuLjH7GwqzKIuUKR01C6wkPQ6DTEqsKgVXsaM06D5ZAcuAdQ6gvhcuoZDwdRpnVAROyrgATCZ2VpK65g+3qXTz4EGh4MugGhNMQtRAE0iRUaY1KitnIAutrqRfhb21aJvPgZtop0nADtdZQhU7sh8uxxbWYqccr+wdjTbTNwrLX1vFtZuMHsvbpdnf2eu0O2WD9U5Qdfa8qr3u73xkcRplCdEWEWnmLOhMbC/n2opIomsy2hsTHp3zIZ5RV/EETS8vL0YH35UbpzhLBymdR6W17pHzxJhZEtLMhNuRuTpWGK8bO8vs4MdeLhRdQqiieSDSdcF0cctCLDRGRZ1jwSO6JkUE0YjTEWDpLi5ICK6mvN55020Hz9rf/9bde/GqoqPhPfa+9fa9wPvBe+H96r32Tr1o66+tf7fvbz/Y/qfhNehfwnzq3TuVzzfeSms8+g9IyYuH</latexit>

Algorithm BFD.
instance: T = {x1, x2, . . . , xn}; `i 2 (0, 1], i = 1, 2, . . . , n
output: ⇡BFD : T ! {1, 2, . . . , µBFD}, where load(j) =

P
⇡BFD(xi)=j

`i  1 for j = 1, . . . , µBFD

begin
sort T into (xi1 , xi2 , . . . , xin) such that `i1 > `i2 > . . . > `in ;
µBFD := 1; // at least one bin is needed
for i := i1, i2, . . . , in do

if 9j 2 {1, 2, . . . , µBFD} : load(j) + `i  1 // some used bin j can take xi

then ⇡BFD(xi) := j which minimizes 1�load(j)�`i // allocate xi to a fullest one
else

begin // introduce a new empty bin
µBFD := µBFD + 1; // remember it is currently last
⇡BFD(xi) := µBFD // allocate xi to it

end
endfor;
return ⇡BFD

end.

(cont’d)

• Time complexity of BFD
BFD is a poly-time algorithm (sorting takes 𝒪(n log n) time and the rest takes 𝒪(n2) time).

• Quality of suboptimal solutions 𝜋BFD
Theorem. (Proof. See booklet. ⧠)
Intuitively. BFD returns allocation 𝜋BFD that uses ⩽ 22% more bins than necessary.
Comment. The upper bound is tight.

Theorem. m(𝜋BFD) ⩽ m(𝜋FFD) (Proof. See booklet. ⧠)

Comment. Therefore, BFD is not worse than FFD. However, we know that there exist instances for
which m(𝜋BFD) < m(𝜋FFD).

Borut Robič (January 10, 2023) 71

m(⇡BFD) 6 11
9 m(⇡⇤) + 4

Dynamic Programming

• Sometimes we can compute optimal solution of an instance of a given
computational problem if we know optimal solutions of smaller instances.

• The method of dynamic programming starts with solutions to trivial instances
and then progressively computes optimal solutions of ever larger instances
from optimal solutions of smaller instances.

Borut Robič (January 10, 2023) 72

PROBLEM: KNAPSACK (revisited)

We dealt with the KNAPSACK problem when we used the greedy method.
Now we will use the method of dynamic programming to solve this problem.

• Definition. Fill a knapsack of given load-capacity with most valuable subset
of a given set of objects. Formally:
• Instance of the problem:

• X = {x1,…,xn} … set of n objects
• ai ∊ 𝐍 … weights of objects i=1,2,…,n
• pi ∊ 𝐍 … values of objects i=1,2,…,n
• b ∊ 𝐍 … load-capacity

• Feasible solution: every Y ⊆ X such that ∑xi ∊ Y ai ⩽ b … every subset Y of X not heavier than b
• Quality of a feasible solution Y: m(Y) = ∑xi ∊ Y pi … value of Y
• Goal: Find a feasible solution Y* which maximizes m(Y).

• Our design strategy.
1. Design an exact exp-time algorithm E for KNAPSACK using dynamic programming.
2. Transform the algorithm E into an approximation algorithm A for KNAPSACK.

Borut Robič (January 10, 2023) 73

Algorithm E (Exact algorithm)

First, we design an exact, pseudo-polynomial algorithm for the KNAPSACK problem.

• Idea.
• Let p ∊ [0,] … a possible value (i.e. neither negative nor too large)

• Define Xi := {x1, x2, … xi } … the set of the first i objects
• Every subset of Xi has some weight and some value. Let us focus on the subsets of

Xi whose weights are ⩽b and values are =p (subsets of Xi that are not too heavy and value exactly
p). Sometimes there are no such subsets in Xi . But, if there are, then (at least) one of
them has the smallest weight (is the lightest); in this case, let us denote this set by S(i,p).
In short, we define:

• Use of S(i,p). Suppose that we computed, in succession, the sets

S(n,), S(n, - 1), S(n, - 2),… until we found the first S(n,p*) which is defined.

So, p* would be the largest value for which there exists a subset of Xn (all objects) that
is not heavier than b. Thus, S(n,p*) would be the solution to the KNAPSACK problem!

Borut Robič (January 10, 2023) 74

nP
1
pi

S(i, p) =

8
>><

>>:

the lightest subset of Xi,
which weights 6 b and values = p, if such a subset exists;

" (undefined), otherwise.

nP
1
pi

nP
1
pi

nP
1
pi

(cont’d)

• Question. How to compute the sets S(i,p)?
• Answer. We can use the method of dynamic programming:

• For all p ∊ [0,], compute the (trivial) sets S(1,p) and their weights A (1,p)
• Find out how to compute “larger” sets S from “smaller” ones.
• Using this, compute “largest” sets S(n, p) and return a defined set with maximal p.

• Details.
• i = 1. Now X1 = {x1}. The subsets of X1 are ∅ and {x1}.

The weight and value of ∅ are 0. The weight of {x1} is a1 and its value is p1. Therefore, we obtain:
S(1,0) = ∅ and A(1,0) = 0
S(1,p1) = {x1} and A(1, p1) = a1

S(1,p) = ↑ and A(1, p) = ↑ , for all p∊[0,] except 0 and p1
• i ⩾ 2 Consider object xi. There are two possibilities: either xi ∊ S(i,p) or xi ∉ S(i,p). We analyze

each.
•

• If xi ∊ S(i,p) then S(i,p) = {xi} U S(i-1,p-pi) and A(i,p) = ai + A(i-1,p-pi)
assuming that p-pi ⩾ 0 ∧ S(i-1,p-pi)↓ ∧ ai + A(i-1,p-pi) ⩽ b

•

• If xi ∉ S(i,p) then S(i,p) = S(i-1,p) and A(i,p) = A(i-1,p)
• By definition, S(i,p) must be the lighter of the two possibilities; therefore, the weight of S(i,p) is

A(i,p) = min { A(i-1,p), ai + A(i-1,p-pi) }

• The computation of the sets S(i,p) will run in the bottom-up fashion (increasing i, increasing p).

Borut Robič (January 10, 2023) 75

nP
1
pi

nP
1
pi

(cont’d)

• Algorithm

Borut Robič (January 10, 2023) 76

<latexit sha1_base64="a1X1aUrzYqXGFPHggZvsLxixkL8=">AAAG3HicjVVLb9NAEHahCaW8WjhymVIj9eGkdhEPtarUgpA4FpW+1G3MerNJtlmvLe+atooCFw4gxJUfxo2/wS9g/UiyaStgJVvjeX0zO18mQcyZVK77a+La9clK9cbUzelbt+/cvTcze39PRmlC6C6JeJQcBFhSzgTdVUxxehAnFIcBp/tB91Vm3/9AE8ki8U6dx/Q4xG3BWoxgpVX+7ORvFNA2Ez2Fg4CJdh/OztDGvx5AXcb5NAD0UNCCLd6OEqY6Ibyu9wEtIzQ0MSEVFoSu9cE+cEA4EPvMAZy9AhsMzyhVcaoyv8PGkl0YSlNeYX+Qt1S2okT7xrC2Aa5dqFSkNUimod/rbnj9htBg3dLW1Db0fgXNobkVQGEQnfVYC7Q/gw3wbBhlB7B3FjwnXsxSIwelMU6S6HTdNhy2hg4eLAMUmCcFJvZPdLraWLFUNLN61wfKHMEtEGgYq3NJlb3+cXRyhMLBtcfDYt8rAnmQYELhzPdQkotlhqK60gv73ijeuDiWGVfNixP/c1OrzhMH8WakpCPGL+0/hnIyGMqJCWXkGJCmlSWpaaagNgU3G8IpbbYpcmBngdV0c5ltUVfYjE5FPh0oPOwL6YbHLuw6Vca95S0zDacQmBhXOZTfiwPKjtWrOtSk5whUVzvg0XBYrBwWIJLGY/3Y6xfjt4bxuiZNNLMqe0QxoxTKJf1HKTuDVv4CN2xXg9TGgUw+G5Yraa6n2FjK289pxHHSplJprZ0xBU47jHRAU2tnQWgwc562keOwyJE7NZYWDVMOmlCVJmKwN2rGStHl1PvZF9LScMNN+zPzbt3ND1wWvFKYt8qz7c/81IWRNKRCEY6lPPLcWB33cKIY4bQ/jVJJY0y6uE2PtChwSOVxL1/OfXisNc283VYkFORaM6KHQynPw0B7hlh15EVbprzKdpSq1ovjHhN6a1JBCqBWyvUPDrJND02WUKL4uRYw0euZESAdrKmn9P9BdgnexZYvC3urde9Z/enb1fnNl+V1TFkPrUfWguVZz61N6421be1apHJY+VT5UvlabVQ/V79Vvxeu1ybKmAfW2Kn++AOkde5g</latexit>

Algorithm E.
instance: X,n, pi, ai, b
output: Y ⇤

begin
for p := 0 to

Pn
k=1 pk do // if i = 1

S(1, p) := ";
A(1, p) := 1 +

Pn
j=1 aj

endfor;
S(1, 0) := ;; A(1, 0) := 0;
S(1, p1) := {x1}; A(1, p1) := a1;
for i := 2 to n do // if i = 2, 3, . . . , n

for p := 0 to
Pn

j=1 pj do
if p� pi � 0 ^ S(i� 1, p� pi)# ^

^ ai +A(i� 1, p� pi)  b ^ ai +A(i� 1, p� pi)  A(i� 1, p)
then

S(i, p) := {xi} [S(i� 1, p� pi); A(i, p) := ai +A(i� 1, p� pi)
else

S(i, p) := S(i� 1, p); A(i, p) := A(i� 1, p)
endfor

endfor;
p⇤ := largest p for which S(n, p)#;
Y ⇤ := S(n, p⇤);
return Y ⇤

end.

(cont’d)

• Computational complexity of algorithm E

It seems that the time complexity of the algorithm E is Θ(n) (due to the double loop).
But recall that the complexity is (by definition) a function of the sizes of the arguments,
(space required by the arguments), and not a function of the magnitudes of the arguments.

In Θ(n), pi represents the magnitude of the value of the object xi, not the space
required to store the object’s value of this magnitude. The space required to store
the object’s value of magnitude pi is log(pi). Similarly for the sum of magnitudes.

So, Θ(n) is a polynomial function in the magnitude of the arguments pi .
However, it is an exponential function in the size of the arguments pi .

We say that algorithm E has a pseudo-polynomial time complexity.

Borut Robič (January 10, 2023) 77

nP
1
pi

nP
1
pi

nP
1
pi

nP
1
pi

Algorithm A (Approximation algorithm)

Based on the algorithm E, we now design an approximation algorithm for the KNAPSACK..
• Idea.

• Exponential complexity of the algorithm E stems in the loop for p:=0 to do
because is exponential function of the size of the input data p1, p2,…, pn .

• Let us replace each pi by substantially smaller value pi’ (i.e., pi’ ≪ pi). Then also
turns into a substantially smaller (i.e., ≪), thus speeding up E.

• In particular, replacing each pi by pi’ = pi /2c, for some constant c ∊𝐍, the execution
time of algorithm E will reduce by factor 2c.

• Note that instead of exact solving the instances of the form I =
(X,n,p1,p2,…,pn,a1,a2,…,an,b),
algorithm E now computes exact solutions of some other instances, the instances of the
form I’ = (X,n,p’1,p’2,…,p’n,a1,a2,…,an,b).

• Are the solutions of instances I and I’ related?
Yes, the exact solution Y*(I’) of I’ is at the same time approximate solution I, because

Borut Robič (January 10, 2023) 78

nP
1
pi

nP
1
pi

nP
1
pi

nP
1
p

0

i

nP
1
pi

nP
1
p

0

i

• Y ⇤(I 0) ✓ X

•
P

xj2Y ⇤(I0)

aj  b.

(cont’d)

(cont’d)

• We can now write the approximation algorithm A for solving instances I of KNAPSACK.
Algorithm

Borut Robič (January 10, 2023) 79

Algorithm A.
instance: I = {X,n, pi, ai, b}, constant c 2 N;
output: suboptimal solution Y (I) of the instance I
begin

for i := 1 to n do p0i := bpi/2cc;
//let I 0 = {X,n, p0i, ai, b} be the instance associated to I
Y ⇤(I 0) := exact solution of I 0 obtained by algorithm E;
Y (I) := Y ⇤(I 0);
return Y (I)

end.

(cont’d)

• Quality of suboptimal solutions Y(I)

What is the performance ratio?

Theorem.

Intuitively. Algorithm A returns a solution Y(I) of I which is at most r-times smaller than the
optimal solution Y*(I). Note also that r depends on the instance I and constant c.

• When we fix the constant c, the choice of c also effects the ratio r (see above), and hence
the quality of the approximate solution Y(I).

• Alternatively, we can choose the desired r (performance ratio), and then determine the
associated constant c. We find (see booklet) that

•

• Computational complexity of algorithm A

Theorem. Algorithm A has time complexity .

• In fact, A is fully polynomial approximation scheme FPAS for the KNAPSACK problem.

Borut Robič (January 10, 2023) 80

m(Y ⇤(I))
m(Y (I))  r, where r = pmax

pmax�n2c and pmax = max
i

pi.

c =
⌅
log(r�1

r
pmax

n)
⇧
.

O(n3 r
r�1)

RANDOMIZED SOLVING
OF COMPUTATIONAL PROBLEMS

When we face an NP-complete or NP-hard computational problem we
usually give up searching for an exact polynomial-time algorithm for the
problem.
Instead of searching for an approximation algorithm, we may search for
a heuristic algorithm that trades certainty of a solution for execution
time. When such an algorithm exploits random numbers and returns,
for any instance of the problem, a solution whose probability of error is
bounded, we say that the algorithm is randomized.

Borut Robič (January 10, 2023) 81

PROBLEM: PRIMES

• Definition. Given a natural number n, decide whether or not n is prime.
Formally:
• Instance of the problem:

• n … natural number
• Solution: YES (if n is prime), NO (if n is composite)

• Clearly, PRIMES is a decision problem.

Borut Robič (January 10, 2023) 82

The Naïve algorithm

There is an obvious and intuitively appealing algorithm for the PRIMES problem.
• Idea. Check whether or not the number n is divisible by any of the numbers 2, 3, …, .

If it is, then n is composite; otherwise n is prime.
• Algorithm.

• Computational complexity of the naïve algorithm
As the test i |n is done at most -times, it seems that time complexity is .
However, the size of the input n is size(n) = and not n (magnitude). So, the
seeming time complexity , when expressed by size(n), is in fact exponential:

Borut Robič (January 10, 2023) 83

2
p
n

O(2
p
n) O(2

p
n)

dlog2 ne
O(2

p
n)

2
p
n =

2
p
2log2 n 6 2

p
2size(n) = 2

1
2 size(n) = ⇥(2

1
2 size(n))

procedure NaivePRIMES(n) return YES/NO;

begin

prime := YES; //Provisional answer

for i:=2 to b
p
nc do

if i|n then

prime := NO; exit

endif

endfor;

return(prime)

end.

The AKS algorithm

Question. Can the problem PRIMES be deterministically solved in polynomial time?
After several decades of fruitless attempts of many scientists, in 2002, Agrawal, Kayal,
and Saxena answered the question positively; they discovered a deterministic polynomial
time algorithm, called the AKS algorithm, and proved its time complexity to be .
Other researchers improved this loose upper bound to and then to
A 2005 variant of AKS algorithm has time complexity . Other attempts to find
even better (tighter) upper bound for AKS algorithm and its versions are well under way.

The algorithm is of immense theoretical importance, but it is not useful in practice.

Until the discovery of the AKS algorithm, the PRIMES was believed to be unsolvable in
polynomial time. For this reason, scientists developed other approaches to primality
testing that are still of great practical use. We will describe the Rabin’s algorithm, ana
algorithm that is founded on random number selection.

Borut Robič (January 10, 2023) 84

eO(log(n)12)
eO(log(n)10.5) eO(log(n)7.5)

eO(log(n)6)

The Rabin’s algorithm

• We begin with a well-known theorem.

Theorem. (Fermat little theorem) If n is prime number, then for any integer w, the
number wn − w is an integer multiple of n. (wn-w=0(mod n), i.e. wn=w(mod n), i.e. wn-1 = 1(mod n)).

Focusing on w ∊ {1,2,…,n-1}, the theorem reads as follows:
n is prime ⇒ ∀w ∊ {1,2,…,n-1}: wn-1 = 1 (mod n)

• The equivalent statement is (as A ⇒ B is equivalent to ¬A ⇐ ¬B, and ¬∀xP(x) to ∃x¬P(x))
n is composite ⟸ ∃w ∊ {1,2,…,n-1}: wn-1 ⧧ 1 (mod n)

• Definition. Let F(w,n) := wn-1 ⧧ 1 (mod n). A w ∊ 𝐍, such that F(w,n) is true, is called a
Fermat’s witness to the compositeness of n.

• If a Fermat witness (to the compositeness of n) exists then n is surely composite.
The following algorithm (next slide) checks all potential witnesses w = 2,3,… n-1.

Borut Robič (January 10, 2023) 85

(cont’d)

• The procedure Composite(n) returns YES if it has found a Fermat’s witness for n,
thus we can be sure that YES is a reliable answer.

• What if the procedure returns NO? This happens if it didn’t find any Fermat witness
among the values 2,3,…,n-1. Does that mean that n is composite? No!

• Why? The reason is that there exist composite numbers which have no Fermat’s
witnesses! Such numbers are called the Carmichael’s numbers.

Examples. The numbers 561, 1105, 1729, 2465 are Carmichael’s numbers. Since 1994 we know there are infinitely many
Carmichael’s numbers. In fact, it was proved that there are about n2/7 Carmichael’s numbers between 1 and large n.

• Summary. The answer YES (n is composite) can be trusted, i.e. YES is always correct.
The answer NO (n isn’t composite, it is prime) cannot be trusted , i.e. NO may be false
(as n may be prime or Carmichael’s number). Composite(n) returns a trueYES, trueNO or falseNO.

Borut Robič (January 10, 2023) 86

procedure Composite(n) return YES/NO;

begin

composite := NO; //Provisional ans

for w:=2 to n-1 do

if F(w,n) then

composite := YES; exit

endif

endfor;

return(composite)

end.

(cont’d)

• Idea.
• Replace F(w,n) with some sharper predicate R(w,n), so that the following will hold:

n is composite ⟺ ∃w ∊ {1,2,…,n-1}: R(w,n)

• If we found such an R(w,n) then Carmichael’s numbers would no longer trouble us.
If we replaced F(w,n) in the procedure Composite(n) with R(w,n), both YES and NO

would be reliable answers. The corrected procedure NewComposite(n) would be

Borut Robič (January 10, 2023) 87

procedure NewComposite(n) return YES/NO;

begin

composite := NO; //Provisional ans

for w:=2 to n-1 do

if R(w,n) then

composite := YES; exit

endif

endfor;

return(composite)

end.

(cont’d)

• The hypothetical predicate R(w,n) should have two properties:
• It should be efficiently computable. (Its value true/false should be computable in polynomial time)
• If n is composite, then there should be “sufficiently many” R-witnesses to n’s compositeness.

(Why? How many? We will answer this shortly.)

• But, does such an R(w,n) exist? Yes!

Theorem. Let k,m ∊ 𝐍, where m is odd, satisfying the equation n-1 = m2k. Then

Definition. A w ∊ 𝐍, such that R(w,n) is true, is called a Riemann’s witness to the
compositeness of n.

• It was found that
• R(w,n) is computable in polynomial time.
• If n is composite, then there exist at least (F V R)-witnesses for the compositeness of n.
• Miller proved, that there is a predicate W(w,n) (= F(w,n) V R(w,a) V A(w,n), for some predicate A(w,n))

such that if n is composite, then there are at least W-witnesses for the compositeness of n.
He found that

Borut Robič (January 10, 2023) 88

R(w, n) = wm 6= ±1 (mod n) ^ 8i 2 {1, 2, . . . , k � 1} : wm2i 6= �1 (mod n)

1
2n

3
4n

W (w, n) = wn�1 6⌘1(mod n) _ 9i
�
2i|(n�1) ^ 1<gcd(w(n�1)/2i�1, n)<n

�

(cont’d)

• How did Rabin use these ideas to design a primality test? :
• If he applied the procedure NewComposite(n) --- with R(w,n) replaced by F(w,r) V R(w,n) to

have at least witnesses for a composite n, --- both YES and NO would be correct answers.
• But in case of a prime n, the procedure would check in succession all values w = 2,3,…,n-1,

and require n-2 = Θ(n) time, which is in fact exponential (recall:).

• Instead of systematic checking all w = 2,3,…,n-1, Rabin applied checking randomly picked w’s
from {2,3,…,n-1}. A single random selection and checking is performed by the following
procedure:

• The answer YES is reliable (it is trueYES), since a witness has been picked.
The answer NO is not reliable (it is trueNO or falseNO), since
• either witnesses exist but random selection has missed all of them (so n is composite)

• or there are no witnesses (so n is prime)

Borut Robič (January 10, 2023) 89

1
2n

n = 2log2 n = O(2size(n))

procedure RandomlyPick&Check(n) return YES/NO;

begin

composite := NO; //Provisional answer

w := Randomly_select(1,n); //Randomly pick w from {1,2,...,n}

if R(w,n) V F(w,n) //Check the value of predicate R V F

then composite := YES //w is (R V F)-witness

endif;

return(composite)

end.

(cont’d)

• Now suppose that we run RandomlyPick&Check(n) r times (e.g. r = 100) as follows:
• In each run, w is randomly picked and checked and an answer YES/NO is returned.
• Question. What is the probability that falseNO is obtained in each of r runs?

• A falseNO is obtained when there are witnesses but random selection of w missed all of them.
Since there are at least (FVR)-witnesses, the probability of missing all of them is < .

• So the probability of missing the witnesses r-times in succession is .

Borut Robič (January 10, 2023) 90

1
2n

1

2

procedure RabinPrimalityTest(n,r) return (YES/NO, real);

begin

i:=1;

repeat

composite := NO;

w := RandomlyPick&Check(1,n);

if R(w,n) V F(w,n)

then composite := YES

endif;

i++

until (composite=YES or i=r);

if composite=YES

then return (YES, 1) //n is composite with probability 1

else return (NO, 1-P(r) //n is prime with probability 1-P(r)

endif

end.

P (r) <(12)
r

END

Borut Robič (January 10, 2023) 91

