Operation	Notation	Definition	Schema Description	Degree	Cardinality (c)
Selection	$\sigma_{\theta}(\mathbf{r})$ Returns tuples	of r satisfying the predica	R ate θ .	п	$0 \le c \le N$
Projection	$\pi_{A_1,A_2}(\mathbf{r})$ Returns tuples	of <i>r</i> consisting only of att	$\{A_1, A_2 \dots\}$ ributes $A_1, A_2 \dots$	$ \{A_1, A_2 \dots\} $. (eliminates du	$1 \le c \le N$ uplicates).
Union ¹	r∪s Returns all tupl	es of r and all of s (elimir	<i>R</i> nates duplicates	<i>n,m</i>).	$\max\{N, M\} \le c \le N + M$
Difference ¹	r − s, r\s Returns all tupl	es of <i>r</i> that are not in <i>s</i> .	R	n, m	$\max\{0, N - M\} \le c \le N$
Cartesian product	r × s Concatenates ea	ach tuple of <i>r</i> with each tr	<i>R.S</i> uple of <i>s</i> .	<i>n</i> + <i>m</i>	NM
Intersection ¹	r∩s Returns all tupl	r-(r-s) es of r that are also in s .	R	n, m	$0 \le c \le \min\{N, M\}$
Theta join	$\mathbf{r} \Join_{\theta} \mathbf{s}$ Returns tuples	$\sigma_{\theta}(r \times s)$ of cartesian product of <i>r</i> a	<i>R.S</i> and <i>s</i> satisfying	$n + m$ the predicate θ	$0 \le c \le NM$
Equijoin	$\mathbf{r} \bowtie_{\theta_{=}} \mathbf{s}$ Returns tuples	$\sigma_{\theta_{=}}(r \times s)$ of cartesian product of <i>r</i> a	<i>R.S</i> and <i>s</i> satisfying	n + m the predicate θ	$0 \le c \le NM$
Natural join ²	r ⋈ s Returns equijoi attribute is elim	$\pi_{R\cup S}(\sigma_{r,A_1=s,A_1\wedge\dots}(r\times s))$ n of <i>r</i> and <i>s</i> over all comminated.) $R \cup S$ non attributes w	n + m - cnm where one occur	$0 \le c \le NM$ rence of each common
Left outer join	$\mathbf{r} \rtimes \mathbf{s}$ Returns natural attributes of <i>s</i> a	/ join of <i>r</i> and <i>s</i> where tup re also included in the res	$R \cup S$ bles of <i>r</i> having sult ³ . Comment	n + m - cnm no matching va $\pi \pi_R(r \rtimes s) = r.$	$N \le c \le NM$ lues in common
Right outer join	$\mathbf{r} \ltimes \mathbf{s}$ Returns natural attributes of r a	/ join of <i>r</i> and <i>s</i> where tup re also included in the res	$R \cup S$ bles of <i>s</i> having sult ³ . Comment	n + m - cnm no matching va $\pi_s(r \ltimes s) = s.$	$M \le c \le NM$ lues in common
Full outer join	r × s Returns natural butes of the oth	/ join of <i>r</i> and <i>s</i> where tup er relation are also incluc	$R \cup S$ bles of <i>r</i> or <i>s</i> hav led in the result	n + m - cnm ing no matchin ³ .	$N + M \le c \le NM$ g values in common attri-
Semijoin	$\mathbf{r} \triangleright_{\theta} \mathbf{s}$ Returns tuples	$\pi_R(\sigma_{\theta}(r \times s))$ of <i>r</i> that participate in the	<i>R</i> eta join of <i>r</i> and	<i>n</i> <i>s</i> (due to predic	$0 \le c \le N$ cate θ).
Division ⁴	$\mathbf{r/s}, \mathbf{r} \div \mathbf{s}$ $\frac{\pi_{R-S}(r) - }{-\pi_{R-S}((\pi_{R-S}(r) \times s) - r)}$ $R-S$ $n-m$ $0 \le c \le N/M$ Returns tuples of r consisting only of attributes in $R-S$ (denoted x), thus that for <i>every</i> tuplein s (denoted y) there exists a tuple in r equal to concatenation of x and y .				
Aggregate	$\tau_{AL}(\mathbf{r})$ Applies aggreg	/ ate function list <i>AL</i> to the	/ e relation <i>r</i> .	AL	1
Grouping	$GA_{TAL}(\mathbf{r})$ Groups tuples of to these groups	/ of <i>r</i> by grouping attribute	/ es GA and then a	GA + AL applies aggrega	$1 \le c \le \prod_{A_i \in GA} dom(A_i) $ te function list <i>AL</i>
Rename	$\rho_{r(A_1,A_2)}(s)$ Renames the re	/ lation <i>s</i> and all of its attri	$\{A_1, A_2 \dots\}$ butes (new nam	$ \{A_1, A_2 \dots\} $ nes are <i>r</i> and A_1	<i>M</i> , <i>A</i> ₂).
Assignment	$r(A_1, A_2 \dots) \leftarrow s$ Assigns name r	s / to relation s and A_1, A_2 .	$\{A_1, A_2 \dots\}$ to its attribute	$ \{A_1, A_2 \dots\} $ es.	M

Relational algebra operations

 $r, s \rightarrow$ relations, with relation schemas R, S (Sh(r) = R, Sh(s) = S)

 $n, m \rightarrow$ degrees of the relations (deg(r) = n, deg(s) = m)

 $cnm \rightarrow$ number of common attributes in the relations *r* and *s*

 $N, M \rightarrow$ cardinalities of the relations (*card*(*r*) = *N*, *card*(*s*) = *M*)

 $A_i \rightarrow \text{attribute}$

 $\theta \rightarrow \text{logical predicate}$

 $\theta_{=} \rightarrow$ logical predicate which contains only equality comparisons and logical conjunction \wedge

 $AL \rightarrow$ list of aggregate functions⁵ and corresponding attributes (e.g. "COUNT A₁, SUM A₂...")

 $GA \rightarrow$ grouping attributes (e.g. " $A_1, A_2 \dots$ "). They must differ from those in AL

⁰Author takes no responsibility for the errors in the text.

 ^{1}r and *s* must be union-compatible.

²When r and s have no common attributes, natural join equals cartesian product.

³Unknown values are set to *NULL*.

⁴Attributes of *s* must be a subset of attributes of *r*, $S \subseteq R$.

⁵Can be one of *COUNT*, *SUM*, *AVG*, *MAX* or *MIN*.