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1 Preliminaries

A model of computation is a formal definition of the basic notions of algorithmic compu-
tation. It rigorously defines

� what is meant by the notion of the algorithm,

� what is the environment required to execute the algorithm,

� how the algorithm executes in this environment.

2 Finite Automata and Regular Expressions

A deterministic finite automaton (DFA) is a 5-tuple (Q,
∑

,δ,q0,F ) where:

� Q is a finite set of states,

�

∑
is a finite input alphabet,

� q0 ∈ Q is the initial state,

� F ⊆ Q is the set of final states, and

� δ is the transition function, i.e. δ : Q× Σ→ Q.

That is, δ(q, a) is a state (for each state q and input symbol a).
Note: δ is the program of DFA. Every DFA has its own, specific δ.

A string x is said to be accepted by a DFA M = (Q,
∑
, δ, q0, F ) if δ(q0, x) = p for

some p ∈ F .

The language accepted by a DFA M is defined as the set L(M) = x ∈
∑∗ |δ(q0, x) ∈ F

A language L’ is said to be a regular set (or just regular) if L’ is accepted by some
DFA (if L’ is accepted by some DFA (i.e. if ∃ DFA M : L’ = L(M))).

2.1 Nondeterminism

Question: Given an input word a1a2 . . . an, who decides whether or not there exists a
sequence of transitions leading from initial to some final state?
Answer: NFA itself!

Question: How does NFA do that?
Answer: The NFA is not a realistic model of computation: it is assumed that NFA can
always guess right. That is, it is assumed that NFA has the magic capability of choosing,
from any given set of options, the right option, i.e. the option that leads to a success (if
such an option exists; otherwise, NFA halts).
In particular, if there are several transitions from a state on the same input symbol, the NFA can imme-

diately choose the one (if there is such) which eventually leads to some final state.

Question: If NFA is unrealistic, who needs it?
Answers:
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� NFA (and other nondeterministic models that we will see later) can be used to find
lower bounds on the time required to solve computational problems. The reasoning
is as follows: If a problem P requires time T to be solved by a nondeterministic
model M, then solving this problem on any deterministic version D of the model M
must require at least time T (because D lacks the ability of prediction).

� Often it is much easier to design a NFA (or some other nondeterministic model)
for a given problem P. We then try to construct an equivalent deterministic version
(equivalent in the sense that it solves P too, regardless of the time needed).

2.1.1 Nondeterministic finite automaton

A nondeterministic finite automaton (NFA) is a 5-tuple (Q,
∑
, δ, q0, F ) where:

� Q is a finite set of states,

�

∑
is a finite input alphabet,

� q0 ∈ Q is the initial state,

� F ⊆ Q is the set of final states and

� δ is the transition function, i.e. δ : Q×
∑
→ 2Q

That is, δ(q, a) is the set of all states p, such that there is a transition labeled a
from q to p.

Note: δ is the program of NFA. Every NFA has its own specific δ.

A string x is said to be accepted by a NFA M = (Q,
∑
, δ, q0, F ) if δ(q0, x) contains

some p ∈ F (i.e.,δ(q0, x) ∩ F 6= ∅).

The language accepted by a NFA M = (Q,
∑
, δ, q0, F ) is the set

L(M) = {x ∈
∑∗ | δ(q0, x) contains a state in F}

Every DFA is also NFA.

Let L be a set accepted by a NFA M. Then there exists a DFA M’ that accepts L.

2.1.2 Nondeterministic finite automaton with ε moves

A NFA with ε-moves (NFAε) is a 5-tuple (Q,
∑
, δ, q0, F ) where:

� Q is a finite set of states,

�

∑
is a finite input alphabet,

� q0 ∈ Q is the initial state,

� F ⊆ Q is the set of final states and

� δ is the transition function, i.e. δ : Q× (
∑
∪{ε})→ 2Q

That is, δ(q, a) is the set of all states p, such that there is a transition labeled a
from q to p, where a is either a sybol in

∑
or ε.
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A string x is said to be accepted by a NFAε M = (Q,
∑
, δ, q0, F ) if the set

L(M) = {x ∈
∑∗ | δ̂(q0, x) contains a state in F}

Let L be a set accepted by a NFAε M. Then there exists a DFA M’ that accepts L.

The set of all states reachable from the state q with ε-transitions only: ε-Closure(q).

Let
∑

be an alphabet. Let L1 and L2 be sets of words from
∑∗. The concatenation

of L1 and L2, denoted L1L2, is the set
L1L2 = {xy | x ∈ L1 and y ∈ L2} Words in L1L2 are formed by taking an x in L1 and following it

by a y in L2, for all possible x, y.

Let L ⊆
∑∗. Define L0 = {ε} and Li = LLi−1 for i ≥ 1. The Kleene closure (in

short closure) of L, denoted L∗, is the set

L∗ =
∞⋃
i=0

Li

and the positive closure of L, denoted L+, is the set

L+ =
∞⋃
i=1

Li

L∗ is the set of words that are constructed by concatenating any number of words from L.

L+ is the same, but the case of zero words (whose concatenation is defined to be ε), is excluded.

Note: L+ contains ε iff L contains ε.

2.1.3 Regular expressions

Let
∑

be alphabet. The regular expressions (r.e.) over
∑

(and the sets that they denote)
are defined inductively as follows:

1. ∅ is a r.e.; it denotes the empty set, ∅;
2. ε is a r.r.; it denotes the set {ε};
3. For each a ∈

∑
, a is a r.e.; it denotes the set {a};

4. If r and s are r.e.s denoting languages R and S, respectively, then

� (r + s) is a r.e.; it denotes the set R ∪ S; (union of R and S)

� (rs) is a r.e.; it denotes the set RS; (concatenation of R and S)

� (r∗) is a r.e.; it denotes the set R∗. (Kleene closure of R)

Note. The basic r.e.s are defined explicitly (1,2,3). All the other r.e.s are defined inductively (4a,b,c).

Definitions of this kind are called inductive. Properties of the defined objects are often proved by induc-

tion.

Conventions
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1. We can omit many parentheses

� if we assume that * has higher precedence than concatenation and concatena-
tion has higher precedence than +.

� if we abbreviate the expression rr∗ by r+.

2. When

� necessary to distinguish between a regular expression r and the language de-
noted by r, we use L(r) for the latter;

� no confusion is possible we use r for both the regular expression and the lan-
guage denoted by the regular expression.

Let r be an arbitrary r.e. Then there exists an NFAε that accepts L(r).
Proof idea: We use induction on the number of operators in r to show that, for any r.e.
r, there exists an NFAε M = (Q,

∑
, δ, q0, {f0}) with one final state and no transitions

out of it, such that L(M) = L(r).
Note: NFAεs with just one final state will enable us to easily combine them into larger NFAεs. No

generality will be lost in this way. (Why? Show how an arbitrary general NFA can be transformed into

such equivalent NFAε.)

Let M be an arbitrary DFA. There exists a r.e. that denotes L(M).
Proof idea:

� We view L(M) as a union of finitely many sets.

� Each of the sets corresponds to a final state of M and contains exactly the words
that take M from its initial state to this final state.

� We then define these sets inductively (bottom up, by simpler sets). Simultaneously
we construct to each such set the corresponding r.e.

3 Properties of regular sets

3.1 Pumping lemma

Let L be a regular set. Then there is a constant n (that only depends on L) such that
the following holds:
if z is any word such that

z ∈ L and |z| ≥ n (obstaja beseda z, ki je dalǰsa od n)

then there exist words u, v, w such that

z = uvw, (sestavljena iz u,v,w)

|uv| ≤ n,

|v| ≥ 1, (sredinja beseda dolga vsaj 1)

∀i ≥ 0 : uviw ∈ L. (to besedo lahko poljubno ponavljamo)

7



In addition, n is at most the number of states of the smallest FA accepting L.

Informally:
Given any sufficiently long word z accepted by an FA, we can find a subword v (near
the beginning of z) that may be repeated (”pumped”) as many times as we like but the
resulting word will still be accepted by the FA.

Applications - from p.101
Proving some languages are not regular
(∃z)(∀u, v, w)(∃i ≥ 0)uviw /∈ L⇒ L not regular
(for ’good’ n,z,u,v,w)

: If we prove, for a given L, that the left-hand side of ‘⇒’ holds, then L is not regular.
There exist non-regular languages! For these we will need a model of computation that
is more powerful than FA.

3.2 Closure under union, concatenation, and Kleene closure

The class of regular sets is closed under union, concatenation, and Kleene closure.
Remark: So the union L1 ∪ L2 and concatenation L1L2 of regular sets L1, L2 is a regular set, and the Kleene closure L∗

of a regular set L is a regular set.

3.3 Closure under complementation and intersection

The class of regular sets is closed under complementation and intersection.
Remark: The theorem states that the complement

∑∗−L of a regular set L is a regular set, and the intersection L1 ∩ L2

of regular sets L1, L2 is a regular set.

3.4 Closure under substitution and homomorphism

Let Σ,∆ be alphabets. A substitution is a function f that maps each symbol of Σ to a
language over ∆; i.e. f(a) ⊆ ∆∗ for each a ∈ Σ. We extend f to words in Σ∗ by defining
f(ε) = ε and f(wa) = f(w)f(a); and then to languages by defining

f(L) =
⋃
x∈L

f(x)

The definition of substitution says nothing about the kind of the set L and the sets f(a),
a ∈ Σ. What if we additionally require that L and all f(a), a ∈ Σ are regular? Is then
f(L) regular too?

A homomorphism is a substitution h such that h(a) contains a single word for each
a ∈ Σ. We extend h to words and languages as in the case of substitution. The inverse
homomorphic image of a word w is the set h−1(w) = {x | h(x) = w} and of a language L
is the set h−1(L) = {x | h(x) ∈ L}.

The class of regular sets is closed under substitution, homomorphism and inverse ho-
momorphism.
Proof idea:
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� (substitution) Let L and all f(a), a ∈ Σ be regular sets. Let L be denoted by r.e. r
and f(a) by ra.
Idea: replace each occurence of a by r by ra. Then prove that the resulting r.e. r′

denotes f(L).
(Use induction on the number of operators in r′.)

� (homomorphism) Closure under homomorphism follows directly from closure under
substitution
(because every homomorphism is by definition a (special) substitution)

� (inverse homomorphism) Let L be regular and h a homomorphism. We want to
prove that h−1(L) is regular. Let M be DFA accepting L. We want to construct a
DFA M ′ such that M ′ accepts h−1(L) iff M accepts L.
Idea: construct M ′ so that when M ′ reads a ∈ ∆, it simulates M on h−1(L).

3.5 Closure under quotient

The quotient of languages L1 and L2 is the set L1/L2 defined by
L1/L2 = {x | ∃y ∈ L2 : xy ∈ L1}.
Informally: L1/L2 contains prefixes of words in L1 whose corresponding suffixes are words in L2.

The class of regular sets is closed under quotient with arbitrary sets.

4 Decision algorithms for regular sets

4.1 Emptiness and finiteness of regular sets.

The set L(M) accepted by a FA M with n states is:

1. nonempty iff M accepts a word of length l, where l < n.

2. infinite iff M accpets a word of length l, where n ≤ l < 2n

Naive algorithms for both could systematically generate all words of appropriate lengths
l and, for each generated word, check whether M accepts that word.
Both algorithms eventually halt and return a YES or NO.

4.2 Equivalence of finite automata.

Two finite automata M1 and M2 are said to be equivalent if they accept the same lan-
guage, i.e. if L(M1) = L(M2).
There exists an algorithm to decide whether two FAs are equivalent.
Proff:
Let M1 and M2 be FAs and L1 = L(M1) and L2 = L(M2). Define a language L3 as follows:

L3 = (L1 ∩ L2) ∪ (L1 ∩ L2)

L3 is regular (due to closure properties) and therefore accepted by some FA M3. This M3

is important because we can show that
M3 accepts a word iff L1 6= L2.

So we need to check whether M3 accepts any word, i.e. whether L3 is non-empty.
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5 The Myhill-Nerode theorem and minimization of

FA

Let L ⊆ Σ∗ be an arbitrary language. Define a relation RL on Σ∗ by
xRLy iff ∀z ∈ Σ∗ : xz ∈ L⇔ yz ∈ L.

Remarks: Two words x, y ∈ Σ∗ are in relation RL iff their arbitrary extensions xz,yz are either both in

L or both outside L. Now, RL is an equivalence relation. So, RL partitions L into equivalence classes.

The number of these is called the index of RL and it can be finite or infinite.

Let M = (Q,Σ, δ, q0, F ) be a DFA. Define a relation RM on Σ∗ by
xRMy iff δ(q0, x) = δ(q0, y).

Remarks: Two words x, y ∈ Σ∗ are in relation RM iff they take M from q0 to the same state q. RM

is equivalence relation. It partitions Σ∗ into equivalence classes, one for each state q reachable from q0.

The number of the classes is the index of RM . The index of RM is finite (since Q is finite). L(M) is the

union of some equivalence classes (that correspond to final states q ∈ F ).

We can prove that RM is right invariant, i.e. that

xRMy ⇒ ∀z ∈ Σ∗ : xzRMyz

(Myhill-Nerode) The following statements are equivalent :

1. L ⊆ σ∗ is a regular set;

2. RL is of finite index;

3. L is the union of some of the equivalence classes of a right invariant equivalence
relation of finite index.

Remarks: The theorem is useful when, for a given L, we have proved one of the items (1,2,3). Then by

Myhill-Nerode theorem, the other two items hold too, and so reveal additional information about L.

A consequence of the Myhill-Nerode Theorem is that for every regular set there is an
essentially unique minimum state DFA.

The minimum state DFA accepting a regular set L is unique up to an isomorphism (re-
naming of the states).

Proof idea:

� Let L be regular. By Myhill-Nerode theorem there are finitely many equivalence
classes of RL. Denote by [x] the eq. class containing x ∈ Σ∗. So {[x] | x ∈ Σ∗} is
the set of all eq. classes of RL.

� Construct a DFA M = (Q,Σ, δ, q0, F ) as follows:

Q := {[x] | x ∈ Σ∗}; (each state will correspond to an eq. class of RL)

δ([x], a) := [xa], for a ∈ Σ

q0 := [ε]
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F := {[x] | x ∈ L}

� Note: δ(q0, w) = δ(q0, a1a2 . . . an) = [a1a2 . . . an] = [w].
Thus, M accepts w iff [w] ∈ F . This means that M accepts L.

� It follows from the proof of Myhill-Nerode theorem that this M is the minimum
state DFA for L.

6 Context-Free grammars and languages

A context-free grammar (CFG) is a 4-tuple G = (V, T, P, S) where:

� V is a finite set of variables

� T is a finite set of terminals

� P is a finite set of productions, each of which is of the form A ⇒ α, where A ∈ V
and α is a word in the language (V ∪ T )∗;

� S is a special variable called the start symbol.

Let A→ β be a production and α, γ ∈ (V ∪ T )∗ arbitrary string.

� We say that we apply the production A→ β to αAγ and obtain αβγ if we substitute
A by β in αAγ. In this case we say that αAγ directly derives αβγ by the production
A→ β.

� We say that two strings are in the relation G ⇒ if the 1st directly derives the 2nd

one by one application of a production in G.

� Let α1, α2, . . . , αm ∈ (V ∪ T )∗,m ≥ 1, be strings.
If α1 G ⇒ α2 ∧ α2 G ⇒ α3 ∧ · · · ∧ αm−1 G ⇒∗ αm

then we say that α1 derives αm in G and denote this fact by α1 G ⇒∗ αm.
Note: The relation G ⇒∗ is reflexive and transitive closure on the relation G ⇒.

The language generated by a CFG G = (V, T, P, S) is the set
L(G) = {w | w ∈ T ∗ ∧ S G ⇒∗ w}.

So the language generated by G is the set of all terminal strings that can be derived from S.

A language L is called context-free (CFL) if L = L(G) form some CFG G.

A string α ∈ (V ∪ T )∗ is called a sentential form if S G ⇒∗ α.

Two grammars G1 and G2 are said to be equivalent if L(G1) = L(G2).

6.1 Derivation trees

Let G = (V, T, P, S) be a CFG. A tree is called a derivation (or parse) tree for G if:

1. Every vertex v has a label that is a symbol in V ∪ T ∪ {ε}.
2. The label of the root is S.

3. If a vertex v is interior and has label A, then A must be in V .
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4. If a vertex v has label A and vertices v1,v2,. . . ,vk are the sons of v (from left to
right) with labels X1, X2, . . . , Xk, respectively, then A → X1X2 . . . Xk must be a
production in P .

5. If vertex v has label ε, then v is a leaf and is the only son of its father.

If we read the labels of all leaves visited by the preorder traversal of the tree we obtain a
string that is called the yield of the derivation tree.

A subtree of a derivation tree is a particular vertex of the tree together with all of its
descendants, edges among them, and their labels. If the root of a subtree is labeled A,
then the subtree is called A-tree.
A subtree is just like a derivation tree, but the label of its root may not be the start symbol S of the

grammar.

6.1.1 The relationship between derivation trees and derivations

Let G = (V, T, P, S) be a CFG. Them S G ⇒∗ α iff there is a derivation tree for G with
yield α.
Proof idea: Induction on the number of interior vertices of the tree.

6.1.2 Leftmost and righmost derivations

A derivation is said to be leftmost if at each step of the derivation a production is applied
to the leftmost variable. Similarly, a derivation is rightmost if at each step a production
is applied to the rightmost variable.

6.1.3 Ambiguity

A CFG G is said to be ambiguous if some word has more than one derivation tree.
Equivalently: A CFG is ambiguous if some word has more than one leftmost (rightmost) derivation.

A CFL L is inherently ambiguous if every CFG for L is ambiguous.

6.2 Simplification of context-free grammars

There are several ways to restrict the form of productions without reducing the power of
CFGs. If L is a nonempty CFL then L can be generated by a CFG G having the following
properties:

� Each variable and terminal of G appears in the derivation of some word in L.

� There are no productions of the form A→ ε.

� If ε /∈ L, there are no productions of the form A→ ε.

� If ε /∈ L, we can require that

every production is of the form A→ BC or A→ b
(Chomsky normal form) where A,B,C are variables and b is a terminal

or, every production is of the form A→ bγ
(Greibach normal form) where b ∈ T and γ ∈ V ∗ (a string of variables).

12



6.2.1 Elimination of useless symbols

Let G = (V, T, P, S) be a grammar. A symbol X is useful if there exists a derivation
S ⇒∗ αXβ ⇒∗ w for some α, β, and w ∈ T ∗. Otherwise X is useless.
Lemmas:

� Given a CFG G = (V, T, P, S) with L(G) 6= ∅, we can effectively find an equivalent
CFG G′ = (V ′, T, P ′, S) such that for each A ∈ V ′ there is a w ∈ T ∗ so that A⇒∗ w

� Given a CFG G′ = (V ′, T, P ′, S), we can effectively find an equivalent CFG G′′ =
(V ′′, T, P ′′, S) such that for each X ∈ V ′′ ∪ T there are α, β ∈ (V ′′ ∪ T )∗ so that
A⇒∗ αXβ.

Applying the lemmas in this order, we can convert a CFG G to the equivalent G” with-
out useless symbols. (Applying the lemmas in the reverse order may fail to eliminate all
useless symbols.)

Every nonempty CFL is generated by a CFG with no useless symbols.

6.2.2 Elimination of ε-productions

An ε-production is a production of the form A→ ε.
Clearly, if ε is in L(G), we cannot eliminate all ε-productions from G. (Otherwise, ε would no longer be
in the generated language.) But if ε is not in L(G), we can eliminate all ε-productions from G.

If L = L(G) for some CFG G = (V, T, P, S), then L−{ε} can be generated by a CFG G′

that has no useless symbols and no ε-productions.
Proof idea:

� Determine for each A ∈ V whether A⇒∗ ε. If so, call A nullable.

� Then replace each production B → X1X2 . . . Xn by all productions formed by striking out some
subset of those Xi’s that are nullable, but do not include B → ε, even if all Xi’s are nullable.

6.2.3 Elimination of unit productions

A unit production is a production of the form A→ B.
The right-hand side must be a single variable; all other productions, including A→ a and ε-production,

are non-unit.

Every CFL without ε can be generated by a grammar that has no useless symbols, no
ε-productions, and no unit productions.

6.2.4 Chomsky normal form

Every CFL without ε can be generated by a grammar in which every production is of the
form

A→ BC or A→ a
where A,B,C are variables and a is a terminal.
TLDR ”proof” p.142:

The input CFG should be without useless variables, unit productions and ε-productions

Replace all terminals in productions so they only appear this form: A → a (one variable → one
terminal)

Break up all productions that include more than 2 (≥ 3) variables into 2 parts. (the maximum
amount of variables in a production is 2: A→ BC)
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6.2.5 Greibach normal form

Every CFL without ε can be generated by a grammar in which every production is of the
form.

A→ bγ

where A is a variable, b is a terminal, and γ is a (possibly empty) string of variables
(γ ∈ V ∗). ”proof” p.144

6.2.6 Inherently ambiguous context-free languages

The CFL L = {anbncmdm | n, n ≥ 1}
⋃
{anbmcmdn | n,m ≥ 1} is inherently ambiguous.

7 Pushdown automata

A pushdown automaton (PDA) is a 7-tuple M = (Q,Σ,Γ, δ, q0, Z0, F ), where

� Q is a finite set of states,

� Σ is the input alphabet,

� Γ is the stack alphabet,

� q0 ∈ Q is the initial state,

� Z0 ∈ Γ is the start symbol,

� F ⊆ Q is the set of final states and

� δ is the transition function,
i.e. a mapping from Q× (Σ ∪ {ε})× Γ to finite subsets of Q× Γ∗.

Note: δ can be viewed as a program of PDA. Every PDA has its own specific δ.

7.1 Moves of the PDA

The interpretation of the move

� δ(q, a, Z) = {(p1, γ1), (p2, γ2), . . . , (pm, γm)} is that the PDA in state q, with input
symbol a and Z the top symbol on the stack can, for any i, 1 ≤ i ≤ m, enter state
pi, replace symbol Z by string γi, and advance the window one symbol. We call this
the regular move.

� δ(q, ε, Z) = {(p1, γ1), (p2, γ2), . . . , (pm, γm)} is that the PDA in state q, indepen-
dently of the input symbol being scanned and with Z the top symbol on the stack,
can enter state pi, and replace Z by γi, for any i, i ≤ i ≤ m. In this case, the
window is not advanced. We call this the ε-move.

Conventions: the leftmost symbol of γi is placed highest on the stack and the rightmost symbol of γi

lowest on the stack. We use a, v, c, . . . for input symbols, u, v, w, . . . for strings of input sybols, captal

letters for stack symbols, and Greek letters for string of stack symbols.
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7.2 Instantaneous descriptions of the PDA

An instantaneous description (ID) is a tripple (q, w, γ), where q is a state, w a string of
input symbols to be read, and γ a string of stack symbols.

� If M = (Q,Σ,Γ, δ, q0, Z0, F ) is a PDA, we say that ID (q, ax, Zβ) can directly be-
come ID(pi, ax, γiβ), — written

(q, ax, Zβ) ` (pi, x, γiβ),
if δ(q, a, Z) contains (pi, γi). Here, a may be an input symbol or ε.

� We write M `∗ for the reflexive and transitive closure of M ` and say that an ID I
can become ID J if IM `∗ J . We write IM `k J if IM `∗ J in exactly k moves.

The subscript M can be dropped whenever the particular PDA M is understood.

7.3 Accepted languages of the PDA

For PDA M = (Q,Σ,Γ, δ, q0, Z0, F ) we define two language:

� L(M), the language accepted by final state, to be
L(M) = {w ∈ Σ∗ | (q0, w, Z0) `∗ (p, ε, γ) for some p ∈ F and γ ∈ Γ∗}

� N(M), the language accepted by empty stack, to be
N(M) = {w ∈ Σ∗ | (q0, w, Z0) `∗ (p, ε, ε) for some p ∈ Q}.

L(M) contains a word w if after reading w, M can be (nondeterminism!) in some final state.

N(M) contains a word w if after reading w, M can have (nondeterminism!) its stack empty. If acceptance

is by empty stack, final states are irrelevant; in this case, we usually let F = ∅.

7.4 Deterministic pushdown automata

A PDA M = (Q,Σ,Γ, δ, q0, Z0, F ) is said to be deterministic if δ fulfills two conditions
for every q ∈ Q and Z ∈ Γ:

1. δ(q, ε, Z) 6= ∅ ⇒ ∀a ∈ Σ : δ(q, a, Z) = ∅

2. ∀a ∈ Σ ∪ {ε} : |δ(q, a, Z)| ≤ 1

What does that mean? Condition 1 prevents the possibility of a choice between ε-moves and regular

moves. Condition 2 prevents the possibility of a choice for ε-moves and the possibility of a choice for

regular moves.

Note: Unlike FA, a PDA is assumed to be non-deterministic unless we state otherwise.
In this case, we denote it by DPDA (for deterministic PDA).

7.5 Pushdown automata and context-free languages

7.5.1 Equivalence of acceptance by final state and empty stack

If L = L(M2) for some PDA M2, then L = N(M1) for some PDA M1.
Proof idea: Given an arbitrary L = L(M2), construct a PDA M1 that simulates M2 but erases the stack

whenever M2 enters a final state. So we have L = N(M1)

If L = L(M1) for some PDA M1, then L = N(M2) for some PDA M2.

15



Proof idea: Given an arbitrary L = L(M1), construct a PDA M2 that simulates M1 but enters a final

state whenever M1 erases its stack. So we have L = N(M2)

⇒ The class of languages accepted by PDAs by final state is the same as the class of
languages accepted by PDAs by empty stack.

7.5.2 Equivalence of PDAs and CFLs

If L is a CFL, then there exists a PDA M sucha that L = N(M). Proof idea: Let L be

an arbitrary CFL. L can be generated by a CFG G in Greibach normal form. Constructa PDA M that

simulates leftmost derivations of G. (It is easier to have M accept by empty stack.) So L = N(M)

If L = N(M) for some PDA M , then L is a CFL Proof idea: Let M be an arbitrary PDA.

Construct a CFG G in such a way that a leftmost derivation in G of a sentence x is a simulation of the

PDA M when given the input x. So L = L(G), a CFL.

The class of languages accepted by PDAs is exactly the class of CFLs.

7.5.3 Deterministic vs. nondeterministic PDAs

DPDAs are less powerful than PDAs (they dont accept the same class of languages).

{wwR | w ∈ (0 + 1)∗} is accepted by a PDA and by no DPDA.

8 Properties of Context-Free Languages

8.1 The Pumping Lemma for CFLs

Let L be a CFL. Then there is a constant n (depending on L only) such that the following
holds:
if z is any word such that

z ∈ L and |z| ≥ n,

then there exist words u, v, w, x, y such that

z = uvwxy,

|vx| ≥ 1,

|vwx| ≤ n, and

∀i ≥ 0 : uviwxiy ∈ L

Informally: Given any sufficiently long word z in a CFL L, we can find two short sub-words v and x

close together that may be repeated, both the same arbitrary number of times, and the resulting word is

still in L.

There exist languages that are not context-free! For such languages we’ll need a model of
computation more powerful than PDA.
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8.2 Closure properties for CFL’s

The class of CFLs is closed under

� union,

� concatenation,

� Kleene closure,

� substitution (and hence homomorphism),

� inverse homomorphism

The class of CFLs is not closed under

� intersection (unless ↓),

� complementation

If L is a CFL and R is a regular set, then L ∩R is a CFL

8.3 Emptiness and finiteness of CFLs

There are decision algorithms to determine whether or not a CFL is:

1. empty;

2. finite.

Proof idea: Let G = (V, T, P, S) be a CFG

� L(G) is nonempty iff S generates some string of terminals

� L(G′) is finite iff the graph has no cycles.
G’ is the Chomsky Normal Form (with no useless symbols) of G

8.4 Membership

The Membership for CFGs is the question ”Given a CFG G = (V,R, P, S) and a word
x ∈ T ∗, is x ∈ L(G)?”
Question: Does there exist a decision algorithm such that, given an arbitrary CFG G and
an arbitrary word x ∈ T ∗, answers the question ”Is x a member of L(G)?”
Answer: The answer is YES; there is the following naive algorithm:

1. Convert G to Greibach normal form (GNF) G′

2. If x = ε then test whether S G ⇒∗ ε else
check all possible derivations in G’. A total of ≤ k|x| leftmost derivations need to be
examined.

The CYK algorithm (Cocke-Younger-Kasami)

� dynamic programming

� O(n3) time, where n = |x|.

� algorithm described p.181/182
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9 Turing machines

An “algorithm” for solving a problem is a finite set of instructions that lead the proces-
sor, in a finite number of steps, from the input data of the problem to the corresponding
solution.

History lesson p.187

To systematically eliminate all possible recipes for solving a problem we need a model of
computation:
A model of computation is a definition that formally characterizes the basic notions of
algorithmic computation, that is, the algorithm, its environment, and the computation.

Several were proposed:

� µ-recursive functions

� general recursive functions

� λ-calculus

� Turing machine

� Post machine

� Markov algorithms

The majority of researchers accepted the Turing machine as the model which most ade-
quately captures the basic concepts of computation.

Moreover, surprisingly, it was soon proved that the models are equivalent in the sense:
What can be computed by one can also be computed by the others.

Computability thesis (Church-Turing thesis). The basic intuitive concepts of comput-
ing are perfectly formalized as follows:

� “algorithm” is formalized by Turing program

� “computation” is formalized by execution of a Turing program in a Turing machine

� “computable function” is formalized by Turing-computable function

The Computability Thesis established a bridge between our intuitive understanding of
the concepts of the “algorithm,” “computation,” and “computability” on the one hand,
and their formal counterparts defined by models of computation on the other. In this way
it finally enabled a mathematical treatment of these intuitive concepts.

9.1 The Turing machine model

The basic variant of the Turing machine has the following components: a control unit
containing a Turing program; a tape consisting of cells; and a movable window over the
tape, which is connected to the control unit. The details are:

� The tape is used for writing and reading the input data, intermediate data, and
output data (results). It is divided into equally sized cells, and is potentially infinite
in one direction (i.e., it can be extended in that direction with a finite number of
cells)
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Each cell contains a tape symbol belonging to a tape alphabet Γ = {z1, . . . , zt}, t ≥
3. The symbol zt is special, for it indicates that a cell is empty; for this reason it is
denoted by t and called the empty space. In addition to t there are at least two
additional symbols: 0 and 1. We will assume that z1 = 0 and z2 = 1.

The input data are contained in the input word. This is a word over an input
alphabet Σ, such that {0, 1} ⊆ Σ ⊆ Γ− {t}. Initially, all the cells are empty (each
contains t) except for the leftmost cells, which contain the input word.

� The control unit is always in some state from a finite set of statesQ = {q1, . . . , qs}, s ≥
1. We call q1 the initial state. Some states are called final; they are gathered in
the set F ⊆ Q. All the other states are non-final. If the index of a state is of no
importance, we use qyes and qno to refer to any final and non-final state, respectively.

There is a Turing program (TP) in the control unit. TP directs TM’s components.
TP is characteristic of the particular TM, i.e., different TMs have different TPs.
A TP is a partial function δ : Q × Γ → Q × Γ × {L,R, S}, called the transition
function.
Note: The TM is by definition deterministic, having at most one choice for a move in each situation.

We can view δ as a table ∆ = Q× Γ, where

– ∆[qi, zr] = (qj, zw, D) if δ(qi, zr) = (qj, zw, D) is an instr. of δ,

– ∆[qi, zr] = 0 if δ(qi, zr) ↑ (undefined).

Without loss of generality, we can assume that there is always a transition from a
qno, and none from qyes.

� The window can move over any cell. Then, the control unit can read a symbol
through the window, and write a symbol through the window, substituting the
previous symbol. In one step, the window can only move to the neighboring cell.

� Before the TM is started, the following must take place:

1. an input word is written to the beginning of the tape

2. the window is shifted to the beginning of the tape

3. the control unit is set to the initial state

� From now on the TM operates independently, in a mechanical stepwise fashion as
instructed by its TP. If the TM is in a state qi ∈ Q and it reads a symbol zr ∈ Γ,
then:

if qi is a final state, then TM halts

else, if δ(qi, zr) ↑ (i.e. TP has no next instruction), then the TM halts

else, if δ(qi, zr) ↓= (qj, zw, D), then the TM does does the following:

1. changes the state to qj

2. writes zw through the window

3. moves the window to the next cell in the direction D ∈ {L,R} (for left
and right), or leaves the window where it is (D = S, for stay)
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Formally, a TM is a seven-tuple T = (Q,Σ,Γ, δ, q1,t, F ). To fix a particular TM, we
must fix Q,Σ,Γ, δ, F .

An instantaneous description (ID) of a TM is the string I = α1qα2, if the current configu-
ration of the TM has the window over the first symbol of α2 and α2 ends at the rightmost
non-blank symbol.
An ID is the “snapshot” of a current configuration (status) of TM’s components between successive in-

structions.

An ID I can directly change to J – written I ` J – if there is an instruction in TM’s
program whose execution changes I to J . The reflexive and transitive closure of ` is `∗;
if I `∗ J , then we say that ID I can change to J .

9.2 Use of a turing machine

There are three elementary tasks where TMs are used:

� Function computation
”Given a function ϕ and arguments a1, . . . , ak, compute ϕ(a1, . . . , ak).”

� Set recognition
”Given a set S and an object x, decide whether or not x ∈ S.”

� Set generation
”Given a set S, generate a list x1, x2, x3, . . . of exactly the members of S.”

9.2.1 Function computation on TMs

Each TM T induces, for any k ≥ 1, a function ϕT that maps k words into 1 word. We
define ϕT as follows.
Let T = (Q,Σ,Γ, δ, q1,t, F ) be a TM and k ≥ 1. The k-ary proper function of T is a
partial function ϕT : (Σ∗)k → Σ∗, defined as follows:
If the input to T is k words u1, . . . , uk ∈ Σ∗, then the value of ϕT at u1, . . . , uk is defined
to be

ϕ(u1, . . . , uk) :=

{
v, if T halts ∧ returns on the tape the word v ∧ v ∈ Σ∗;

↑, if T doesn’t halt ∨ the tape doesn’t have a word in Σ∗.

The interpretation of u1, . . . , uk and v is arbitrary.

In practice, however, we usually face the opposite task:
“Given a k-ary function ϕ : (Σ∗)k → Σ∗, find a TM T that can compute ϕ’s values.”
That is, given ϕ, we must construct a TM T such that ϕT = ϕ.

Let ϕ : (Σ∗)k → Σ∗ be a function. Then:

� ϕ is computable if ∃TM that can compute ϕ anywhere on dom(ϕ)∧dom(ϕ) = (Σ∗)k;

� ϕ partial computable (p.c.) if ∃TM that can compute ϕ anywhere on dom(ϕ);

� ϕ incomputable if there is no TM that can compute ϕ anywhere on dom(ϕ).
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9.2.2 Set recognition on TMs

Each TM T induces a language L(T ), the language accepted by T .

Let T = (Q,Σ,Γ, δ, q1,t, F ) be a TM and w ∈ Σ∗ a string. We say that w is accepted by
T if q1w `∗ α1pα2, for some p ∈ F and α1α2 ∈ Γ∗. The language accepted by T is the set
L(T ) = {w | w ∈ Σ ∧ w is accepted by T}.
So, a word is accepted by T if it causes T to enter a final state (if submitted as input). The language

accepted by T consists of exactly such words.

The interpretation of w is arbitrary.

In reality, however, we usually face the opposite task:
“Given a set S ⊆ Σ∗, find a TM T that accepts S.”
That is, given a language (set) S, we must construct a TM T such that L(T ) = S.

Let S ⊆ Σ∗ be a language (set). Then:

� S is decidable if ∃TM that answers YES/NO to “Is x ∈ S?” for any x ∈ Σ∗.

� S is semi-decidable if ∃TM that answers YES to “Is x ∈ S?” whenever x ∈ S

� S in undecidable if there is no TM that answers YES/NO to “Is x ∈ S? for any
x ∈ Σ∗”

It looks that for some sets S we cannot algorithmically decide the question “Is x ∈ S?”
Why?

If S = L(T ) is semi-decidable and x ∈ Σ∗ an arbitrary word, then:

• if x is in S, then T will eventually halt on input x (and accept x).

• But if x is not in S, then T may not halt on input x (and never reject x).

For such an S, as long as T is still running on input x, we cannot tell whether

• T will eventually halt (and accept/reject x) if we let T run long enough, or

• T will run forever.

In other words:

• If, in truth, x ∈ S, then T will (halt and accept x and) answer YES

• It, in truth, x /∈ S, then

− T may (halt and reject x and) answer NO; or

− T may (never halt and) never answer NO.

9.2.3 Set generation on TMs

Let T = (Q,Σ,Γ, δ, q1,t, F ) be a TM. T is called a generator if it writes to its tape, in
succession and delimited by #, (some) words from Σ∗. (We assume that # is in Γ− Σ.)
The language generated by T is defined to be the set G(T ) = {w | w ∈ Σ∗ ∧ T eventually
writes w to the tape}.
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In practice, we usually face the opposite task:
“Given a set S, generate a list x1, x2, x3, . . . of exactly the members of S.”
That is, given a language (set) S, we must construct TM T such that G(T ) = S.

Questions: When can the elements of a given set S be generated, i.e. listed in a sequence
so that every element of S eventually appears in the sequence? When can such a sequence
be algorithmically generated, i.e., by a TM? Can every countable set be algorithmically
generated?

9.2.4 C.E. languages (sets)

Suppose that the elements of a given set S can be listed in a sequence so that every
element of S eventually appears in the sequence. If x is an arbitrary element of S, then
x will eventually appear in the list; it will appear as nth in order, for some n ∈ N . So we
can speak of the 1st, 2nd, 3rd, . . . nth, . . . element of S. Because the elements of S can be
enumerated, we say that S is enumerable.

A set S is computably enumerable (c.e.) if S = G(T ) for some TM T ; that is, if S
can be generated by a TM.

A set S is c.e. iff S is semi-decidable.

9.3 Modifications of the Turing machine

This holds true for all following modified TMs:
Although V seems to be more powerful than the basic model T , it is not so; T can compute
anything that V can compute. We prove this by describing how T can simulate V . (The
other way round is obvious as T is a special case of V .)

9.3.1 TM with finite storage

This variant V has in its control unit a finite storage capable of memorizing k ≥ 1
tape symbols and using them during the computation. The Turing program (TP) is the
function δV : Q× Γ× Γk → Q× Γ× {L,R, S} × Γk.

9.3.2 TM with multiple-track tape

This variant V has the tape divided into tk ≥ 2 tracks. On each track there are symbols
from the alphabet Γ. The window displays tk-tuples of symbols, one symbol for each
track. The TP is δV : Q× Γtk → Q× Γtk × {L,R, S}.

9.3.3 TM with two-way infinite tape

This variant V has the tape unbounded in both directions. Formally, the TP is the
function δV : Q× Γ→ Q× Γ× {L,R, S}.
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9.3.4 TM with multiple tapes

This variant V has tp ≥ 2 unbounded tapes. Each tape has its own window that is
independent of other windows. TP is δV : Q× Γtp → Q× (Γ× {L,R, S})tp.

9.3.5 TM with multidimensional tape

This variant V has a d-dimensional tape, d ≥ 2. The window can move in d dimen-
sions, i.e., 2d directions L1, R1, L2, R2, . . . , Ld, Rd. The turing program is δV : Q × Γ ×
{L1, R1, L2, R2, . . . , Ld, Rd, S}.

9.3.6 TM with nondeterministic program

This variant V has a Turing program δ that assigns to each (qi, zr) a finite set of alternative
transitions {(qj1, zw1, D1), (qj2, zw2, D2), . . . }. The machine nondeterministically chooses
a transition from the set and performs it.

How does V choose a transition out of the current alternatives?
The following is assumed: the machine chooses a transition that leads it to a solution
(e.g., to a state qyes), if such transitions exist; otherwise, the machine halts.
The nondeterministic TM is not a reasonable model of computation because it can foretell the future

when choosing from alternative transitions. Nevertheless, it is a very useful tool, which makes it possible

to define the minimum number of steps needed to compute the solution (when a solution exists). This

is important when we investigate the computational complexity of problem solving. We will see that in

the following chapters.

9.3.7 The importance of the modifications of the TM

The modifications are useful when we try to prove the existence of a TM for solving a
given problem P . Usually, the construction of such a TM is easier if we choose a more
versatile modification of TM.

Sometimes, we can even avoid the complicated construction of the actual TM for
solving P .
How? We do as follows:

1. We devise an intuitive algorithm A (a “recipe”, finite list of instructions) for
solving P .

2. Then we say: “By the Computability Thesis, there is a TM T that does the
same as A.” Then, we can refer to this T (as the true algorithm for solving P )
and treat it mathematically.

Since none of the modifications is more powerful than the basic TM, this additionally
supports our belief that the Computability Thesis is true.

The computations on the modifications of TM can considerably differ in time (num-
ber of steps) and space (number of visited cells). But this will become important only
in Computational Complexity Theory (where we will investigate the time and/or space
complexity of problem solving).
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9.4 Universal turing machine

9.4.1 Coding of TMs

Given a TM T = (Q,Σ,Γ, δ, q1,t, F ), we want to encode T , i.e. represent T by a word
over some coding alphabet.

How will we encode TM T?

� The coding alphabet will be {0, 1}.

� We’ll only encode δ, but in such a way that Q,Σ,Γ, F which determine the particular
T , can be restored (obtained) from the encoded δ. How will we encode TP δ?

1. If δ(qi, zj) = (qk, zl, Dm) is an instruction of δ, then we will encode the instruc-
tion by the word

K = 0i10j10k10l10m

where D1 = L,D2 = R,D3 = S.

2. In this way, we will encode each instruction of δ.

3. From the obtained codes K1, K2, . . . , Kr we will construct the code 〈δ〉 of δ:

〈δ〉 = 111K111K211 . . . 11Kr111

� We will identify the code 〈T 〉 of the TM T with 〈δ〉, i.e. 〈T 〉 := 〈δ〉.

9.4.2 Enumeration of TMs

We can interpret 〈T 〉 as the binary code of some natural number. We call this number
the index of T .

Notice that some natural numbers are not indexes (because their binary codes do not
have the required form, which results from the encoding method).

� To avoid this we introduce the following convention:
Any natural number whose binary code is not of the required form is an index of
the empty TM.

The δ of the empty TM is everywhere undefined; for every input, this TM immedi-
ately halts (in 0 steps).

Now we can say: every natural number is the index of exactly one TM.

Given an arbitrary n ∈ N , we can obtain from the n the components Q,Σ,Γ, F that
define the particular TM (i.e. the TM whose index is n). How?

1. We inspect the binary code of n to check if it is of the required form 111K111K211 . . . 11Kr111.

2. If it is, we partition the code into strings K1, K2, . . . , Kr and by analyzing these we
can collect all the information needed to obtain all the components δ,Q,Σ,Γ, F of
the TM T .
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The restored TM can be viewed as the nth basic TM and denoted by Tn.

By letting n run through 0, 1, 2, . . . we obtain the sequence of TMs

T0, T1, T2, . . .

Notice that this is an enumeration of all basic TMs.

9.4.3 The existence of a universal turing machine

There is a Turing machine U that can compute whatever is computable by any other
Turing machine.

Proof idea: The idea is to construct a Turing machine U that will be capable of simulating any other
TM T . To achieve this, we use the method of proving by Computability Thesis (CT):

1. first, we describe the concept of the machine U and describe the intuitive algorithm (that should
be) executed by U’s Turing program, and

2. then we refer to CT to prove that U exists.

Proof

� The input tape contains an input word consisting of two parts: the code 〈T 〉 of an
arbitrary Turing machine T = (Q,Σ,Γ, δ, q1,t, F ), and an arbitrary word w.

� The work tape is initially empty. The machine U will use it in exactly the same
way as T would use its own tape when given the input w.

� The auxiliary tape is initially empty. The machine U will use it to record the current
state in which T would be at that time, and for checking whether this state is a
final state of T .

� The control unit contains a Turing program that executes an algorithm.

The Turing program of U should execute the following intuitive algorithm:

1. Check if the input word is 〈T,w〉, where 〈T 〉 is a code of some TM. If it is not, halt.

2. From 〈T 〉 restore F and write 〈q1, F 〉 to the auxiliary tape.

3. Copy w to the work tape and shift its window to the beginning.

4. (Let the auxiliary tape have 〈qi, F 〉 and the work tape window scan zr).
If qi ∈ F , halt. (T would halt in the final state qi).

5. On the input tape, search in 〈T 〉 for the code of the instruction δ(qi, zr) = . . .

6. If not found, halt (T would halt in the final state qi).

7. (The instruction δ(qi, zr) = . . . was found and is δ(qi, zr) = (qj, zw, D).
On the work tape, write the symbol zw and move the window in the direction D.

8. On the auxilliary tape, replace 〈qi, F 〉 by 〈qj, F 〉.

9. Return to step 4.

This algorithm can be executed by a human. By the Computability thesis, there exists
a TM U = (QU ,ΣU ,ΓU , δU , q1,t, FU) whose δU does the same (executes the algorithm).
We call U the Universal turing machine (UTM).
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9.4.4 Construction of an UTM

What is the simplest UTM?

� We focus on UTMs with no storage and a single two-way infinite tape with one
track.

� How shall we measure the ‘simplicity’ of such UTMs?

– Shannon proposed the product |QU |·|ΓU | (the maximal number of instructions
in δU)

– A more realistic measure would be the actual number of instructions in δU .

Researchers focused on different classes of UTMs, denoting them by UTM(s, t) where
s, t ≥ 2, containing all UTMs with s states and t tape symbols.

The smallest one (for now) is UTM(4,5) = 22 instructions

9.4.5 The importance of the Universal Turing Machine

Turing’s discovery of a universal TM was a theoretical proof that a general-purpose com-
puting machine is possible, at least in principle.

Turing was certain that such a machine could be built in reality:
It is possible to construct a physical computing machine that can compute whatever is
computable by any other physical computing machine.
He envisaged something that is today called the general-purpose computer.

9.5 The first basic results

Theorems
Let S,A,B be arbitrary sets. Then:

1. S is decidable ⇒ S is semi-decidable

2. S is decidable ⇒ S is decidable

3. S and S are semi-decidable ⇒ S is decidable

4. A and B are semi-decidable ⇒ A ∩B and A ∪B are semi-decidable

5. A and B are decidable ⇒ A ∩B and A ∪B are decidable

10 Undecidability

10.1 Decision problems and other kinds of computational prob-
lems

We define the following four kinds (classes) of computational problems:

� Decision problems (also called yes/no problems). The solution of a decision problem
is the answer YES or NO (The solution is a single bit.)
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� Search problems. Given a set S and a property P , the solution of the search problem
is an element x of S such that x has the property P . (The solution is an element of
a set.)

� Counting problems. Given a set S and a property P , the solution of a counting
problem is the number of elements of S that have the property P . (The solution is
a natural number.)

� Generation problems (also called enumeration problems). Given a set S and a
property P , the solution of a generation problem is a list of elements of S that have
the property P . (The solution is a sequence of elements of a set.)

We will focus on the decision problems.
Because the decision problems ask for the simplest possible solutions, i.e. solutions rep-
resentable by a single bit. (We are pragmatic and hope that this will make our study of
other kinds of computational problems simpler.)

10.2 Problem solving

10.2.1 Language of a decision problem

There is a link between decision problems and sets that enables us to reduce the questions
about decision problems to questions about sets. We’ll uncover it in 4 steps.

1. Let D be a decision problem.

2. We are usually faced with a particular instance d of the problem D. The instance
d is obtained from D by replacing the variables in the definition of D with actual
data. The problem D can be viewed as the set of all the possible instances of D. We
will say that an instance d ∈ D is positive/negative if the answer to d is YES/NO,
respectively.

3. In the natural-language description of d there can be various actual data (numbers, matrices, graphs, . . . ). However,

to compute the answer on a machine—be it an abstract model such as the TM or a modern computer—we must

represent these actual data in a form that is understandable to the machine. How?

Since any machine uses some alphabet Σ (e.g. Σ = {0, 1}), we must choose a
function that will transform (code) every instance of D into a word in Σ∗. We call
such a function the coding function and denote it by ‘code’. Thus, code: D → Σ∗,
and code(D) is the set of codes of all instances of D. We will write 〈d〉 instead of
code(d).

4. Gather the codes of all the positive instances of D in a set L(D).
The language of a decision problem D is the set L(D) which is defined as L(D) =
{〈d〉 ∈ Σ∗|d is a positive instance of D}.

Now observe that the following relation holds:
d ∈ D is positive ⇔ 〈d〉 ∈ L(D)

This is the link between decision problems and sets (formal languages).

What we gain:
Solving a decision problem D can be reduced to recognizing the set L(D) in Σ∗.
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The answer to the instance d of D can be found if we determine where is 〈d〉 relative to L(D)

The link is important because it enables us to apply –when discussing and/or solving
decision problems –all the theory that we developed to recognize sets.

What does the recognizability of L(D) tell us about the solvability of D ?

� L(D) is decidable ⇒ There is an algorithm that, for any d ∈ D, answers yes or no.
Proof: There is a TM that, for any 〈d〉 ∈ Σ∗, decides whether or not 〈d〉 ∈ L(D)

� L(D) is semi-decidable ⇒ Then there is an algorithm that,

– for any positive d ∈ D, answers yes;

– for a negative d ∈ D, may or may not answer no in finite time

Proof: There is a TM that, for any 〈d〉 ∈ L(D), accepts 〈d〉. However, if 〈d〉 /∈ L(D), the algorithm

may or may not reject 〈d〉 in finite time.

� L(D) is undecidable⇒ Then there is no algorithm that, for any d ∈ D, answers yes
or no.
Proof: There is no TM capable deciding, for any 〈d〉 ∈ Σ∗, whether or not 〈d〉 ∈ L(D).

Let D be a decision problem. We say that the problem

� D is decidable (or computable) L(D) is a decidable set;

� D is semi-decidable L(D) is a semi-decidable set;

� D is undecidable (or incomputable) L(D) is an undecidable set.

Terminology
Instead of a decidable/undecidable problem we can say computable/incomputable problem. But the

latter notion is more general: it can be used with all kinds of computational problems, not only decision

problems. The terms solvable/unsolvable is even more general: it addresses all kinds of computational

and non-computational problems.

10.3 Halting problem

The halting problem DHalt is defined by
DHalt = “Given a TM T and w ∈ Σ∗, does T halt on w?”

The halting problem DHalt is undecidable.
Comment: This means that there exists no algorithm capable of answering, for arbitrary T and w, the

question “Does T halt on w?” So, any algorithm whatsoever, which we might design now or in the future

for answering this question, will fail to give the answer for at least one pair T , w.

The universal language, denoted by K0, is the language of the Halting problem, that
is,

K0 = L(DHalt) = {〈T,w〉 | T halts on w}.

The second language is obtained from K0 by imposing the restriction w := 〈T 〉.
The diagonal language, denoted by K, is defined by
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K = {〈T, T 〉 | T halts on 〈T 〉}

Note:

� K is the language of the problem DH = “Given a TM T does T halt on 〈T 〉”

� DH is a subproblem of DHalt (since it is obtained from DHalt by fixing w to w = 〈T 〉).

Proof idea:
We suppose that K is a decidable set.
Then there must exist a TM DK that for any T , answers 〈T, T 〉 ∈?K:

DK(〈T, T 〉) =

{
yes, if T halts on 〈T 〉;
no, if T doesn’t halt on 〈T 〉;

Our intention is to construct S in such a way that, when given as input its own code 〈S〉,
S will expose the incapability of DK to predict whether or not S will halt on 〈S〉

DK is unable to correctly decide the question 〈S, S〉 ∈?K, but this contradicts out sup-
position that K is a decidable set DK its decider. So K is not decidable.

10.4 The basic kinds of decision problems

10.4.1 The are undecidable sets that are still semi-decidable

K0 is a semi-decidable set

We must find a TM that accepts K0. Here is an idea. Given an arbitrary 〈T,w〉,
the machine must simulate T on w, and if the simulation halts, the machine must
return yes and halt. So, if such a machine exists, it will answer yes iff 〈T,w〉 ∈?K0.
But we already know that such a machine exists: it is the Universal Turing machine
U. Hence, K0 is semi-decidable.

Comment: this is why K0 is called the universal language.

Corollary: K0 is an undecidable (but still) semi-decidable set.
Similarly we prove for K.

10.4.2 The are undecidable sets that are not even semi-decidable

K0 is not a semi-decidable set.

If K0 were semi-decidable, then both K0 and K0 would be semi-decidable. But then
K0 would be decidable (Post’s theorem). This would be a contradiction. So K0 is
not semi-decidable.

In the same way we prove that K is not a semi-decidable set.

A decision problem D can be of one of the 3 kinds (classes):

� D is decidable
This means that there is an algorithm that can solve any instance d ∈ D. Such an
algorithm is called the decider of the problem D.
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� D is semi-decidable undecidable
This means that no algorithm can solve any instance d ∈ D. But there is an
algorithm that can solve any positive d ∈ D. It is called the recognizer of D.

� D is not semi-decidable
This means that for any algorithm there is a positive instance and a negative instance
of D such that the algorithm cannot solve either of them

10.5 Some Other Incomputable Problems

There are many other incomputable problems about algebra, programs, grammars that
no algorithm can completely solve.

10.5.1 Busy beaver problem

Informally, a busy beaver is the most ‘productive’ TM of its kind.
It does not waste time with writing symbols other than 1 or not moving the window. Let
us group such TMs into classes τn, N = 1, 2, . . . where τn contains TMs with the same
number of states.

Define τn (for n ≥ 1) to be the class of all TMs that have:

� the tape unbounded in both ways;

� n non-final states (including q1) and one final state qn+1;

� Σ = {0, 1} and Γ = {0, 1,t};

� δ that writes only the symbol 1 and moves the window either to L or R.

For any n ≥ 1, there are finitely many TMs in τn.

We say that a TM T ∈ τn is a stopper if T halts on an empty input.
For every n ≥ 1, there exists a stopper in τn. Hence there is at least one and at most
finitely many (i.e. |τn|) stoppers in τn.

So, there must exist in τn a stopper that attains, among all the stoppers in τn, the
maximum number of 1s that are left on the tape after halting.

Such a stopper is called the n-state busy beaver and denoted n-BB.

The busy beaver function is s(n) = ‘the number of 1s attained by n-BB’
The busy beaver function is incomputable.
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11 Computational complexity theory

11.1 Deterministic time and space(classes DTIME, DSPACE)

11.1.1 Deterministic time complexity & complexity classes DTIME

Let M = (Q,Σ,Γ, δ, q1,t, F ) be a DTM with k ≥ 1 2-way infinite tapes. We say that
DTM M has (det.) time complexity T (n) if, for every w ∈ Σ∗ of length n, M makes
≤ T (n) steps before halting.

� It is assumed that M reads all of w; thus T (|w|) ≥ |w| + 1, so T (n) ≥ n + 1. So
T (n) is at least linear.

A TM M of time complexity T (n) can decide w ∈?L(M) in ≤ T (|w|) steps.

A language L has (det.) time complexity T (n) if there is a DTM M of (det.) time
complexity T (n) such that L = L(M). We define the class of all such languages by

DTIME(T (n))={L | L is a language ∧L has (det.) time complexity T (n)}

Informally, DTIME(T (n)) contains all Ls for which the problem w ∈?L can be det. solved in ≤ T (|w|)
time.

This can be extended to a decision problem D and its language L(D) (p.277).

11.1.2 Deterministic space complexity & complexity classes DSPACE

Let M = (Q,Σ,Γ, δ, q1,t, F ) be a DTM with 1 input tape and k ≥ 1 work tapes. We say
that DTM M has (det.) space complexity S(n) if, for every input w ∈ Σ∗ of length n, M
uses ≤ S(n) cells on each work tape before halting.

� input-tape cells do not count

� It is assumed that M uses at least the cell under the initial position of the window.
So S(n) is at least constant function 1.

A TM M of space complexity S(n) can decide w ∈?L(M) on space ≤ S(|w|).

A language L has (det.) space complexity S(n) if there is a DTM M of (det.) space
complexity S(n) such that L = L(M). We define the class of all such languages by

DSPACE(S(n))= {L | L is a language ∧L has (det.) space complexity S(n)}
Informally, DSPACE(S(n)) contains all Ls for which the problem w ∈?L can be det. solved on ≤ S(|w|)
space.

This can be extended to a decision problem D and its language L(D) (p.279).

11.2 Nondeterministic time and space (classes NTIME, NSPACE)

11.2.1 Nondeterministic time complexity & complexity classes NTIME

N = (Q,Σ,Γ, δ, q1,t, F ) be a NTM. We say that NTM N is of nondet. time complexity
T (n) if, for every input w ∈ Σ∗ of length n, there exists a computation in which N makes
≤ T (n) steps before halting.
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� Again it is assumed that N reads all of w; thus T (|w|) ≥ |w|+ 1, so T (n) ≥ n+ 1.
So T (n) is at least a linear function.

A NTM N of time complexity T (n) can decide w ∈= L(N) in ≤ T (|w|) steps.

A language L is of nondet. time complexity T (n) if there is a NTM N of nondet. time
complexity T (n) such that L = L(N). The class of all such languages is

NTIME(T (n))={L | L is a language ∧L has nondet. time complexity T (n)}
Informally, NTIME(T (n)) contains all Ls for which the problem w ∈?L can be nondet. solved in ≤ T (|w|)
time. This can be extended to a decision problem D an its language L(D) (p.282).

11.2.2 Nondeterministic space complexity & complexity classes NSPACE

Let N = (Q,Σ,Γ, δ, q1,t, F ) be a NTM with 1 input tape and k ≥ 1 work tapes. We say
that NTM N is of nondet. space complexity S(n) if, for every input w ∈ Σ∗ of length
n, there exists a computation in which N uses, before halting, ≤ S(n) cells on each work
tape.

� Again, the input-tape cells do not count.

� It is assumed that N uses at least the cell under the initial position of the window.
So S(n) is at least constant function 1.

A NTM N of nondet. space complexity S(n) can decide w ∈?L(N) on ≤ S(|w|) space.

A language L has nondet. space complexity S(n) if there is a NTM N of nondet. space
complexity S(n) such that L = L(N). The class of all languages is

NSPACE(S(n))={L | L is a language ∧L is of nondet. space complexity S(n)}
Informally, NSPACE(S(n)) has all Ls for which w ∈?L can be nondeterministically solved on ≤ S(|w|)
space.

This can be extended to a decision problem D an its language L(D) (p.284).

11.2.3 Summary of complexity classes

In terms of formal languages:

DTIME(T (n)) = {L | L is a language ∧ L has time complexity T (n)}

DSPACE(S(n)) = {L | L is a language ∧ L has space complexity S(n)}

NTIME(T (n)) = {L | L is a language ∧ L has nondet. time complexity T (n)}

NSPACE(S(n)) = {L | L is a language ∧ L has nondet. space complexity S(n)}

In terms of decision problems:

DTIME(T (n)) = {D | D is a decision problem ∧ L(D) has time complexity T (n)}

DSPACE(S(n)) = {D | D is a decision problem ∧ L(D) has space complexity S(n)}

NTIME(T (n)) = {D | D is a decision problem ∧ L(D) has nondet. time complexity
T (n)}
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NSPACE(S(n)) = {D | D is a decision problem ∧ L(D) has nondet. space com-
plexity S(n)}

Informally:

DTIME(T (n)) = {decision problems solvable deterministically in time T (n)}

DSPACE(S(n)) = {decision problems solvable deterministically on space S(n)}

NTIME(T (n)) = {decision problems solvable nondeterministically in time T (n)}

NSPACE(S(n)) = {decision problems solvable nondeterministically on space S(n)}

11.3 Tape compression, linear speedup, and reductions in the
number of tapes

11.3.1 Tape compression

We can encode several symbols to one symbol from a larger alphabet.

For any c > 0 is DSPACE(S(n)) = DSPACE(cS(n)) and NSPACE(S(n)) = NSPACE(cS(n))

11.3.2 Linear speedup

We can group several steps into a new, larger step.

Two conditions need to be fulfilled:

� TM must have at least 2 tapes (e.e. k > 1),

� infn→∞T (n)/n =∞ must hold

Informally: T (n) must grow faster than n (at least slightly). Only then will there
remain, after reading the input, some time available for computation.

If infn→∞T (n)/n =∞, then for any c > 0
DTIME(T (n)) = DTIME(cT (n)) and NTIME(T (n)) = NTIME(cT (n))

11.3.3 Summary

Under certain conditions:

DTIME(T (n)) = DTIME(cT (n))

NTIME(T (n)) = NTIME(cT (n))

DSPACE(S(n)) = DSPACE(cS(n))

NSPACE(S(n)) = NSPACE(cS(n))

Instead of saying that a decision problem D is in DTIME(n2), we can say that D has
det. time complexity of the order O(n2).
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11.3.4 Reductions in the number of tapes

If L ∈ DTIME(T (n)), then L is accepted in time O(T 2(n)) by a 1-tape TM.

If L ∈ NTIME(T (n)), then L is accepted in time O(T 2(n)) by a 1-tape NTM.

If L ∈ DTIME(T (n)), then L is accepted in time O(T (n)logT (n)) by a 2-tape TM.

If L ∈ NTIME(T (n)), then L is accepted in time O(T (n)logT (n)) by a 2-tape
NTM.

If L is accepted by a k-work tape TM of space complexity S(n), then L is accepted by a
1-work-tape TM of space complexity S(n).

11.4 Relations between DTIME, DSPACE, NTIME, NSPACE

11.4.1 Relations between different complexity classes

� DTIME(T (n)) ⊆ DSPACE(T (n))
i.e. What can be solved in time O(T (n)), can also be solved on space O(T (n))

� L ∈DSPACE(S(n)) ∧ S(n) ≥ log2n⇒ ∃c : L ∈DTIME(cS(n))
i.e. What can be solved on space O(S(n)), can also be solved in (at most) time O(cS(n)). (Here c

depends on L.)

� L ∈NTIME (T (n))⇒ ∃c : L ∈DTIME(cT (n))
i.e. What can be solved nondeterministically in time O(T (n)), can be solved deterministically in

(at most) time O(cT (n)).

Consequently, the substitution of a nondeterministic algorithm with a deterministic one causes at

most exponential increase in the time required to solve a problem.

� NSPACE(S(n)) ⊆ DSPACE(S2(n)), if S(n) ≥ log2n ∧ S(n) is “well-behaved” i.e.

What can be solved nondeterministically on space O(S(n)), can also be solved deterministically

on space O(S2(n)).

Consequently, the substitution of a nondeterministic algorithm with a deterministic one causes at

most quadratic increase in the space required to solve a problem.

11.4.2 “Well-behaved” complexity

A function S(n) is space constructible if there is a TM M of space complexity S(n) such
that for each n, there exists an input of length n on which M uses exactly S(n) tape cells.
If for each n,M uses exactly S(n) cells on any input of length n, then we say that S(n)
is fully space constructible.

A function T (n) is time constructible if there is a TM M of time complexity T (n), such
that for each n, there exista an input of length n, on which M makes exactly T (n) moves.
If for all n,M makes exactly T (n) moves on any input of length n, then we say that T (n)
is fully time constructible.

The sets of space and time constructible functions are very rich and include all common functions.

Moreover, most common functions are also fully space and fully time constructible.
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11.5 The classes P, NP, PSPACE, NPSPACE

The requirements of a computation for a computational resource (time, space) are con-
sidered to be reasonable if they are bounded by some polynomial.

11.5.1 P, NP, PSPACE, NPSPACE

Define the complexity classes P, NP, PSPACE and NPSPACE as:

� P=
⋃

i≥1DTIME(ni)
is the class of all decision problems deterministically solvable in polynomial time

� NP=
⋃

i≥1NTIME(ni)
is the class of all decision problems nondeterministically solvable in polynomial time

� PSPACE=
⋃

i≥1DSPACE(ni)
is the class of all decision problems deterministically solvable on polynomial space

� NPSPACE=
⋃

i≥1NSPACE(ni)
is the class of all decision problems nondeterministically solvable on polynomial space

11.5.2 The basic relations (between P, NP, PSPACE, NPSPACE)

The following inclusions hold: P ⊆ NP ⊆ PSPACE ⊆ NPSPACE

� (P ⊆ NP) Every deterministic TM of polynomial time complexity can be viewed as a (trivial)

nondeterministic TM of the same time complexity.

� (NP ⊆ PSPACE) If L ∈NP then ∃k such that L ∈NTIME(nk).

So L ∈ NSPACE(nk), and hence (by Savitch) L ∈DSPACE(n2k). Therefore L ∈PSPACE.

� (PSPACE = NPSPACE) Trivially, PSPACE ⊆ NPSPACE. The opposite direction:

NPSPACE =
⋃

NSPACE(ni) ⊆ (by Savitch) ⊆ DSPACE(nj) ⊆ PSPACE.

11.6 The question P =? NP

We have just proved PSPACE = NPSPACE
⇒ When space complexity is polynomial, nondeterminism adds nothing to the computa-
tional power.

We know P⊆NP, but is P=NP?
⇒ Is it true that when time complexity is polynomial, nondeterminism adds nothing to
the computational power?

We try to prove that P⊆NP
using ”the most difficult” problem in NP.

11.6.1 Problem reductions

Suppose that there existed a D∗ ∈ NP, such that we could “easily” reduce every D ∈ NP
to D∗ in the following sense:

� there would exist a function r : D → D∗
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� that could “easily” transform any instance d ∈ D into an instance r(d) ∈ D∗

� such that the solution s to r(d) could be “easily” transformed into the solution “?”
to d.

Then, for every problem D, solving could be “easily” replaced by solving of D∗

If this were possible, then every D could be viewed as “at most as difficult as” D∗ In
other words, D∗ could be viewed as the “most difficult” problem in NP.

11.6.2 Polynomial-time reductions

First we define “easily” = “in deterministic polynomial time”

A problem D ∈NP is polynomial-time reducible to a problem D′, i.e. D ≤p D′, if there
is a deterministic TM M of polynomial time complexity that, for any d ∈ D, returns a
d′ ∈ D′, such that d is positive ⇔ d′ is positive.
The relation ≤p is called polynomial-time reduction.
Intuitivelly: M replaces, in polynomial time, d ∈ D with d′ ∈ D′ that has the same answer as d. (M

takes 〈d〉 and in poly. time returns a word M(〈d〉), where 〈d〉 ∈ L(D)⇔M(〈d〉) ∈ L(D′))

11.7 NP-complete and NP-hard problems

We have seen that the “most difficult” problem in NP could be defined as the problem
D∗ that has the following property:

� D∗ ∈ NP

� D ≤p D∗, for D ∈ NP

A problem D∗ is said to be NP-hard if

� D ≤p D∗, for every D ∈ NP.

A problem D∗ is said to be NP-complete if

� D∗ ∈ NP and

� D ≤p D∗, for every D ∈ NP

Hence, D∗ is NP-complete if D∗ is in NP and D∗ is NP-hard.

11.7.1 An NP-complete problem: SAT

A Boolean expression is inductively defined as follows:

� Boolean variables x1, x2, . . . are Boolean expressions

� If E,F are Boolean expressions then so are ¬E, E ∨ F , and E ∧ F .

A Boolean expression E is satisfiable if the variables of E can be consistently replaced
with values TRUE/FALSE so that E evaluates to TRUE.

The problem SAT = “Is a Boolean expression E satisfiable?” (the Satisfiability Problem)

SAT is NP-complete
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11.7.2 Proving NP-completeness of problems

Let D ≤p D′. Then

� D′ ∈ P ⇒ D ∈ P

� D′ ∈ NP ⇒ D ∈ NP

So any problem D that can be ≤p-reduced to a problem in P (or in NP), is also in P (or NP).

The relation ≤p is transitive. D ≤p D′ ∧D′ ≤p D′′ ⇒ D ≤p D′′

The following holds:

� D∗ is NP-hard ∧ D∗ ≤p D? ⇒ D? is NP-hard

� D∗ is NP-complete ∧ D∗ ≤p D? ∧D? ∈ NP ⇒ D? is NP-complete

11.7.3 Summary

If P 6= NP, then NP contains:

� NPC - the class of all NP-complete problems

� NPI - the class of all NP-intermediate problems
(Ladner): if P 6= NP, then there exists a problem in NP that is neither in P nor in NPC

� P

If P 6= NP, then no problem in NPC or NPI has polynomial time complexity.
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