Digital Signal Processing - Laboratory sessions

3rd Laboratory Session

1. Sampling

Sampling is conversion of a continuous signal into discrete-time signal obtained by taking samples. (Input: $x_a(t) \leftrightarrow \text{Output}$: $x_a(nT) \equiv x(n)$)

 $x_a(t) = Acos(2\pi Ft + \theta)$, where:

- $-\infty < t < \infty,$
- A is amplitude,
- F is frequency (in cycles per second or Hertz, $Hz = \frac{1}{s}$), $-\infty < F < \infty$,
- θ is phase in radians,
- expression $2\pi F$ can be written shortly as Ω (and it is frequency in radians per seconds), $-\infty < \Omega < \infty$.

$$\implies x_a(nT) \equiv x(n) = Acos(2\pi FnT + \theta) = Acos(\frac{2\pi nF}{F_S} + \theta) = Acos(2\pi nf + \theta), \text{ where:}$$

- $n \in \mathbb{Z}$,

- T is sampling period in seconds,
- F_s is sampling frequency in samples per second, $F_s = \frac{1}{T}$,
- f is frequency in cycles per sample, $f = \frac{F}{Fs}, -\frac{1}{2} \le f \le \frac{1}{2}$,
- expression $2\pi f$ can be written shortly as ω (and it is frequency in radians per sample), $-\pi \leq \omega \leq \pi$.

Tasks:

- (a) Derive the expression for the discrete signal x(n) obtained by sampling $x_a(t) = Asin(2\pi Ft)$ with sampling frequency Fs.
- (b) In Matlab generate three signals, x_1 , x_2 , x_3 , with duration of 3 seconds and following properties: $F_S = 8000Hz$, $x_1(F_1 = 220Hz, A_1 = 3)$, $x_2(F_2 = 880Hz, A_2 = 0.7)$, $x_3 = x_1 + x_2$.
 - Compare signals by plotting them (x coordinate should represent seconds). Compare signals also by listening to them.

2. Generating tones/melody

Tasks:

- (a) Generate following tones: C_1 , C_2 and C_3 . Frequency of different tones can be find on the following website http://www.phy.mtu.edu/~suits/notefreqs.html.
- (b) In Matlab generate a melody by your choice: start with an empty vector, each tone in a melody has its own frequency in Hz, its starting point and its duration.

Notes of some Slovenian children songs (determine the length of tones by yourself):

- i. Kuža pazi: CCCCDDDDEEDDCCC
- ii. Marko skače: EGGGEGGGEEDDCCCDEGGEEDDCC

3. Aliasing, Nyquist Theorem

The Nyquist sampling theorem provides a prescription for the nominal sampling interval required to avoid aliasing. It may be stated simply as: The sampling frequency should be at least twice the highest frequency contained in the signal.

 $F_S \ge 2F_{max}$, where F_S is sampling frequency and F_{max} is the maximum frequency contained in the signal. If $F_S = F_{max}$, then F_S is called Nyquist frequency.

Tasks:

- (a) Consider analog signal $x_a(t) = 3\cos(2\pi 50t)$. Determine the minimum frequency required to avoid aliasing.
 - Suppose that the signal is sampled at rate $F_s = 200Hz$. What is the discrete-time signal obtained after sampling?
- (b) Consider analog signal $x_a(t) = cos(50\pi t) + 10cos(300\pi t)$. Determine the Nyquist frequency for this signal.

4. Representation of discrete-time system

Discrete-time (DT) system is an algorithm. According to the rules, from the input discrete-time signal x(n), it produces the output, which is another discrete-time signal y(n).

Tasks:

- (a) Draw a block diagram of discrete-time system, described by the following difference equation: $y(n) = \frac{1}{3}x(n) + \frac{1}{3}x(n-1) + \frac{1}{3}x(n-2)$.
 - Determine output signal y(n) for the system described above using input signal $x(n) = \delta(n)$ (unit sample). Check result using Matlab function *impz*.
- (b) Draw a block diagram of discrete-time system, described by the following difference equation: $y(n) = \frac{1}{3}x(n) + x(n-3) x(n+2)$.