

Selected topics

- Digital filters
- Digital filters and their properties
- Marginal stability
- FIR filters implemented as IIR filters, integer multiplier filters
- Cascading filters
- Time reversal filtering
- Computational complexity of the DFT

Digital filters

• Arrange the properties according to type of filter

FIR filters	IIR filters		Property
			Conceptually limited (zeros only)
			Conceptually wider (zeros, poles)
			Feedback
			No feedback
			Always stable
			May be unstable
			Can be linear phase
			Nonlinear phase (could be close)
			Convolution computation possible
			Filter order (4 – 20)
			Filter order (20 – 2000)
			Computationally more expensive
			Computationally less expensive
			Could be derived from analog prototypes
			Unrelated to continuous time filtering

Digital filters and their properties

• Properties

FIR filters

- Conceptually limited (zeros only)

No feedback

- + Always stable
- + Can be linear phase
- + Convolution computation possible
- Filter order (20 2000)
- Computationally more expensive

Unrelated to continuous time filtering

IIR filters

- + Conceptually wider (zeros, poles) Feedback
- May be unstable
- Nonlinear phase (could be close)
- + Filter order (4 20)
- + Computationally less expensive
- + Could be derived from analog prototypes

Marginal stability

• An LTI system with poles on the unit circle is not stable (marginally stable)

1

()

- It produces an unbounded response when excited by an input signal that also has a pole at the same position on the unit circle
- Example, determine the step response of the following causal system

$$y(n) = y(n-1) + x(n)$$
The transfer function
$$H(z) = \frac{1}{1-z^{-1}}$$
contains a pole at $z = 1$ (unit circle)
Input signal,
$$x(n) = u(n)$$
unit step signal
The Z transform of $x(n)$

$$X(z) = \frac{1}{1-z^{-1}}$$
also contains pole at $z = 1$
Since
$$Y(z) = H(z) X(z) = \frac{1}{(1-z^{-1})^2}$$
a double pole at $z = 1$

Since

Input signal,

The inverse Z transform

Course: 63744

y(n) = (n+1)u(n)which is a ramp sequence **Digital Signal Processing**

()

- Example, recall moving average
 - M = 8 $y(n) = \frac{1}{M} \sum_{l=0}^{M-1} x(n-l)$ $h(n) = \begin{cases} \frac{1}{M}, & 0 \le n \le M-1 \\ 0, & \text{otherwise} \end{cases}$
- The transfer function is

$$H(z) = \sum_{n=-\infty}^{\infty} h(n) z^{-n} = \frac{1}{M} \sum_{n=0}^{M-1} z^{-n} = \frac{1}{M} (1 + z^{-1} + ... + z^{-M+1}) = \frac{1}{M} \frac{1 - z^{-M}}{1 - z^{-1}}$$

$$Prove the zeros, z(k+1), can be written as$$

$$Z_{(k+1)} = a e^{j2 \pi k / M}, \quad k = 0, 1, ..., M-1$$

$$Prove the zero at z_{1} = 1$$

$$Prove the zero at z_{1} = 1$$

$$H(z) = \frac{1}{M} \frac{1 - z^{-M}}{1 - z^{-1}} = \frac{1}{M} \frac{z^{M}}{z^{M}} \frac{(1 - z^{-M})}{(1 - z^{-1})} = \frac{1}{M} \frac{(z^{M} - 1)}{z^{M-1}(z-1)} = ?$$

$$Prove the zero at z_{1} = 1$$

$$Prove the zer$$

- By proper selection of parameters *m* and *n*, poles on the unit circle are canceled
- FIR filters implemented as IIR filters → much less computation

$$H(z) = \frac{(1 - z^{-m})^M}{(1 - z^{-1})^M}$$

$$H(z) = \frac{(1-z^{-m})^{M}}{(1-z^{-1})^{M}} \Big|_{(z=e^{j\omega})} = e^{-j\omega(\frac{m}{2}-\frac{1}{2})M} \cdot \left(\frac{\sin(m/2\omega)}{\sin(1/2\omega)}\right)^{M}$$

$$H(z) = \frac{(1 + a_k z^{-m})^M}{(1 + b_k z^{-n})^M} \qquad a_k, b_k \in \mathbb{Z}$$

• How to obtain band-stop characteristic using band-pass filter (or, vice versa)?

• High-pass filtering using low-pass filter, HLP(z)

$$H_{LP}(z) = \frac{(1-z^{-344})^2}{(1-z^{-1})^2}$$

$$G(z) = \frac{(1 + a_k z^{-m})^M}{(1 + b_k z^{-n})^M}$$

• High-pass and 50, 100, 150, 200, 250 Hz notch filtering using combined bandpass filter, i.e., low-pass and 50, 100, 150, 200, 250 Hz band-pass filter, *HL*,*50*(*z*)

$$G(z) = \frac{(1 + a_k z^{-m})^M}{(1 + b_k z^{-n})^M}$$

$$H_{L,50}(z) = \frac{(1 - z^{-330})^2}{(1 - z^{-10})^2}$$

$$ak = -1, bk = -1, m = 330, n = 10 in M = 2$$

$$y(k) = 2 \cdot y(k - 10) - y(k - 20) + x(k) - 2 \cdot x(k - 330) + x(k - 660)$$

$$y'(k) = k_k x(k - 320) - y(k)$$

$$y'(k) = k_k x(k - 320) - y(k)$$

f [Hz]

Cascading filters

- Repeating a filter in cascade connection
 - Longer impulse response (for FIR)
 - $-h_1(n)=h(n)=\{\frac{1}{2},-\frac{1}{2}\}$
 - $-h_2(n) = h(n) * h(n) = \{\frac{1}{4}, -\frac{1}{2}, \frac{1}{4}\}$

$$-h_3(n) = h(n) * h(n) * h(n) = \{1/8, -3/8, 3/8, -1/8\}$$

Cascading filters

- Repeating a filter in cascade connection
 - Transfer characteristic is becoming more abrupt
 - In general, given order, cascade filters will not be optimal

$$|H(e^{j\omega})| |H(e^{j\omega})|^{2} |H(e^{j\omega})|^{3}$$

$$- H(e^{j\omega}) - H(e$$

- Repeated zeros and poles in Z plane

Cascading filters

- Repeating a filter in cascade connection
 - Roll-off slope improved
 - Gain at the cutoff frequency changes at the rate N.3dB (N order)

Time reversal filtering

Double-pass filtering scheme

 \rightarrow Zero phase result, off-line analysis, non-causal, needs entire signal

$$\begin{aligned} v(n) &= x(n) * h(n) \rightarrow V(e^{j\omega}) = H(e^{j\omega}) X(e^{j\omega}) \\ u(n) &= v(-n) \rightarrow U(e^{j\omega}) = V(e^{-j\omega}) = V^*(e^{j\omega}) \\ w(n) &= u(n) * h(n) \rightarrow W(e^{j\omega}) = H(e^{j\omega}) U(e^{j\omega}) \\ y(n) &= w(-n) \rightarrow Y(e^{j\omega}) = W^*(e^{j\omega}) = (H(e^{j\omega}) (H(e^{j\omega}) X(e^{j\omega}))^*)^* \\ \rightarrow Y(e^{j\omega}) = X(e^{j\omega}) |H(e^{j\omega})|^2 \end{aligned}$$

See also: https://www.youtube.com/watch?v=ue4ba_wXV6A

Computational complexity of the DFT

• Using basic DFT formula

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}, \quad k = 0, 1, 2, ..., N-1 \qquad W_N = e^{-j\frac{2\pi}{N}}$$

- Computational complexity of the order O(N.N)

- * Each point requires N complex multiplications and N 1 complex additions
- * Therefore, N points, what yields N.N multiplications and N.(N 1) additions
- Example DFT (N = 1024)
 - * Complex multiplications, *N*.*N* = 1 048 576
 - * Complex additions, N.(N 1) = 1047552
- There is the Fast Fourier Transform (FFT) algorithm
 - Computational complexity of the order O(N.log(N))