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Course: 63744 Digital Signal Processing

Digital filter design
● Introduction
● Specifications of filter properties
● Performance constraints
● FIR filters versus IIR filters
● Design of IIR filters
● Design by positioning zeros and poles
● Design via analog prototypes
● Design of FIR filters
● Ideal lowpass filter
● Design by windowing
● Minimax Weighted Error
● Design by iterative optimization
● (Additional materials)
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● From the DSP point of view, filter is a system which is changing the frequency         
   content of signal with purpose

 - The most important is frequency aspect

 - Filter is changing amplitudes and phase angles of the components of input signal

Introduction

|H (e jω)|

|H (e jω)|

|H (e jω)|

|H (e jω)|
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● Specifications

 - Passband (~ 1)

 - Stop band (~ 0)

 - Transition band

 - Phase response

   (usually linear)

● Performance constraints

 - Smallest passband ripple

   (smallest  2.δ1)
 - Narrowest transition band

 - Greatest stop band                          
     attenuation

   (lowest stop band ripple,                
      smallest  δ2, or 2.or or 2.2.δ2)
 

 

δ1 - error in passband
δ2 - error in stop band

[Lyons]

Real amplitude response  ~  Desired amplitude response

Passband or 2.ripple

Stop or 2.band or 2.
ripple

|HD (e
jω

)||H (e jω )|

Specifications of filter properties
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● Desired

● Improving one usually worsens others

● Increasing filter order (cost) can improve all three measures

● Desired

 - the lowest computational complexity

 - the lowest filter order 

Performance constraints

     Smallest 
Passband ripple

         Greatest
 Stop band attenuation

   Narrowest 
Transition band
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● Computational cost important

 →  Use low complexity IIR

     (computational cost unimportant → use linear-phase FIR filters)

● Phase response important

 →  Use linear-phase FIR filters

     (phase unimportant → Use simple IIR filters)

FIR filters versus IIR filters
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● Design by positioning zeros and poles in the Z plane
● Design via analog prototypes
● Design using optimization methods (minimum Least Integral-squared

 Error (ISE) between desired,                  , and actual,                , frequency

 response

Design of IIR filters

|HD (e
jω

)| |H (e jω )|
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● Transfer function of a filter, H(z),  is ratio of two polynomials
● Suitable for designing narrow band stop and bandpass filters (notch filters)

 

● Frequency response of the filter is evaluated on the unit circle in the z-plane

● Zeros of Y(z) are zeros of the filter (lowering the value of frequency and amplitude response)

● Zeros of X(z) are poles of the filter (rising the value of frequency and amplitude response)

●  Matlab:

  [b,a] = zp2tf(Z, P , 1)

  [h,w] = freqz(b, a, 512);

 

● Poles inside the

 unit circle (stability)

● Poles, zeros out of real axis

  → complex conjugate pair

Design by positioning zeros and poles

H ( z) =
Y ( z)
X ( z)

=

∑
k=0

M

bk z
−k

1 + ∑
k=1

N

ak z
−k

=
b0

a0

zN−M ( z−z1)(z−z2) ... (z−zM )

(z−p1)( z−p2) ... ( z−pN )

H (e jω ) = H ( z)∣ z=e jω

z-plane
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● Analog filter family

 - Butterworth

 - Chebyshev Type I

 - Chebyshev Type II

 - Elliptic

● Procedure

 - Transform digital filter specifications to equivalent analog filter specifications

 - Design analog fiter

 - Transform analog filter to digital filter

Design via analog prototypes
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● Butterworth lowpass filters

 - Passband is designed to be maximally flat

 - The amplitude (squared) characteristic (analog domain)

|H a( jΩ)|
2

=
1

1 + ( jΩ/ jΩc)
2 N |H a (s )|

2
=

1

1 + (Ω /Ωc )
2N

Design via analog prototypes

s = jΩ
|H a( jΩ)|
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Butterworth Chebyshev Type I

Chebyshev Type II Elliptic

● Frequency responses of analog lowpass filters

Design via analog prototypes

No ripples Ripples in the
passband

Ripples in the
stop band

Ripples in the
passband and
stop band

[b, a] = butter(n, Wn, ftype);

[b, a] = cheby2(n, Rs, Ws, ftype);

[b, a] = cheby1(n, Rp, Wp, ftype);

[b, a] = ellip(n, Rp, Rs, Wp, ftype);H (z) =

∑
k=0

M

bk z
−k

1 +∑
k=1

N

ak z
−k
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Design via analog prototypes
● MATLAB's

 Filter Design              
   and Analysis              
   Tool (fdatool)
● Example of                   
   3th order                        
   Butterworth                
   lowpass filter

● Cuttof frequency         
   Wc is 0.148
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Design via analog prototypes
● MATLAB's

 Filter Design              
   and Analysis              
   Tool (fdatool)
● Example of                   
  3th order                         
  Butterworth                 
  lowpass filter

● Cuttof frequency         
   Wc is 0.148

● Zero-pole plot
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● FIR filters

 - No poles (at z = 0 only), no precedent in analog filter design

• Approaches
 - Design by windowing  (minimum Least Integral-Squared Error (ISE), or approximation,       
    between desired,                     , and actual,                   , frequency response

 - Design by iterative optimization (minimizing the maximum weighted                                          
     approximation error → minimax criterion)

Design of FIR filters

|HD (e
jω

)| |H (e jω )|

min
b0 , ... ,bM

1
2 π

∫
−π

π

|H D (e
jω

)− H (e j ω )|
2 dω

⏟
F (b 0 ,... , bM )

= ϵ
2

H (z) = ∑
k=0

M

bk z
−k
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● Given ideal (desired) lowpass filter      

 (“Brickwall LP filter”)

● Impulse response  h(n)

● Ideal lowpass filter    → 

Ideal lowpass filter

hD (n) =
1

2π
∫
−π

π

H D(e
jω
) e jω n dω =

1
2π

∫
−ω C

ωC

e jω n d ω

hD (n) = IDTFT [ HD (e
jω
) ]

hD (n) =
sin(ωC n)

π n
    (sinc)

H D (e
jω

) (θ (ω) = 0)
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● Double infinite length of impulse response,  hD(n),   

● Very long FIR (no rational polynomial)

● Nice frequency domain characteristics

hD (n) =
sin(ωC n)

π n
    ( sinc )

hD(n)

n = −∞ , ... ,∞

Ideal lowpass filter
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● Start with ideal frequency response, example: lowpass filter

● Ideal frequency response is desired response

● Truncate  hD(n),  →  h(n), and make it causal (shift for M/2 samples),  →  h'(n)

● Ideal filter                                   

● After truncating (→ minimum

 mean-squared approximation

 between desired,                    , and

 actual,                 , frequency resp.)

 (→ it becomes causal)

hD(n) =
1

2π
∫
−π

π

H D(e
jω
) e jω n dω

hD(n) =
sin (ω C n)

π n

H D (e
jω

)

2 (M/2) + 1 samples,     M = 24

h ' (n)

|HD(e
jω

)|

|H (e jω )|

Design by windowing
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Design by windowing

h(n) = hD(n) . w(n)

w (n) = {1 −M /2 ≤ n ≤ M /2
0     otherwise

w (n)

hD (n)

H D (e
jω

)

H (e jω)

H D(e
jω
)

● Truncation of  hD(n) to 2(M/2)+1 points is multiplication by a rectangular window,  
   w(n)

● Infinite signal multiplied by a finite length window

● Actual frequency response,                , in comparison to desired response,  

 → The windowed version is smeared version of desired response (Gibbs phenomenon)

H (e jω )

0

M = 26
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● Truncated ideal filters have Gibbs' ears
● Example

 2(M/2) + 1 = 27,   2(M/2) + 1 = 129
● Increasing filter length 

 produces narrower ears and

 reduces Integral-Squared 

 Error (ISE)

● Rectangular window provides 

 the best approximation to a 

 desired frequency response

 (in the sense of minimum 

 mean-squared error)

● But, causes large errors

 around discontinuities

 (→ filters are not optimal by minimax criterion)

ω /π

Design by windowing
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Design by windowing
● Rectangular window
● Main lobe width determines 

 transition band

● Side lobe height (invariant

 with length) determines ripples
W (e jω) = ∑

n=−M /2

M /2

e − jω n
=

1 − e − jω(M+1)

1 − e jω
=

sin ((M +1) ω
2

)

sin( ω
2

)

w (n) = {1 −
M
2

≤ n ≤
M
2

0     otherwise

Side lobe height

Main lobe width

   - Transition band

Ripples

Δ ω

Ripples

[Oppenheim, Schafer]

n
−M /2 M /2

|W (e jω)|
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● Windows for FIR filters
● Even though the rectangular window provides the best mean-squared error approximation    
   to a desired frequency response, irregular distribution of error (irregular amplitudes of           
   ripples) bother us

● Other windows differ in

 - Main lobe → Influence on transition band width

 - Side lobes → Influence on size of ripples near transition band

● Prefer windows with narrow main lobe and low side lobe height

● Rectangular window (high side lobes)

● Hanning (Hann) (double width main lobe)

● Hamming (reduces first side lobe)

● Blackman (triple width main lobe)

Design by windowing

0 ≤ n≤ Mw (n) = 1

w (n) = 0.5 − 0.5 cos(
2 π n
M+1

)

w (n) = 0.54 − 0.46 cos(
2π n
M+1

)

w (n) = 0.42 − 0.5cos (
2π n
M+1

) + 0.08 cos(
4 π n
M+1

)
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Design by windowing

● Windows for FIR filters

Hanning

Rectangular

Blackman
Hamming

● Width of main lobe

 Rectangular

 Hanning 

 Hamming

 Blackman

4 π / (M+1)

8 π / (M+1)

8 π / (M+1)

12π / (M+1)

● Peak side lobe                 
   amplitude

  Rectangular -13dB

  Hanning       -31dB 

  Hamming     -41dB

  Blackman     -57dB
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Design by windowing

● Example
● Design a 25 point FIR lowpass filter with a cutoff of 500 Hz (Fs = 8k smp/s)

● No specific transition or ripple requirements   →  Compromise:  Hamming

● Convert the frequency to rad/smp

 1. Get ideal filter impulse response

 2. Get window,  M+1 = 25  →  M/2 = 12

 

 3. Apply window: 

● Matlab:       b = fir1(n, Wn, ftype, window);

ωC =
500
8000

x 2π = 0.125 π

ωC = 0.125π ⇒ hD =
sin (0.125 π n)

π n

w (n) = 0.54 + 0.46 cos(2 π n / 25) , −12 ≤ n≤ 12

h(n) = dD(n) . w(n) =
sin(0.125π n)

π n
(0.54 + 0.46 cos(2π n /25)) , −12 ≤ n ≤ 12

H ( z) = ∑
k=0

M

bk z
−k

→ bk = h(n)
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Minimax Weighted Error
● Filter design by windows is simple but not optimal

● Object of optimization: FIR filters with generalized linear phase

 - Symmetric (or antisymmetric) impulse response

• Design by iterative optimization

● Minimizing the maximum weighted approximation error 

 → minimax (or Chebyshev) criterion between desired,                   , and actual,                 ,                    
        frequency response 

     => Equiripple approximation

E(ω) =W (ω) [H D(e
jω

) − A e(e
jω

)] HD (e
jω

)  - Desired

min
{he(n): 0 ≤ n≤L}

( max
ω ∈ F

|E (ω)| )
E(ω)     - Error

W (ω)     - Weight

A e(e
jω
) = ∑

n=−L

L

he(n)e
− jω n

HD (e
jω

) A e(e
jω

)

A e(e
jω

) - Actual
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Design by iterative optimization
● The most popular method: Parks-McClellan algorithm
● The algorithm

 1. Define passband and stop band regions

 2. Define order, and error weights

 3. Calculate                  and check the result 

 4. Repeat previous step until optimal solution

● The algorithm is using (Chebyshev polynomial approximation, Remez exchange algorithm,              
   alternation theorem)

• Matlab: 

  >>  b = firpm(n, f, a, w, type);      % Optimal FIR digital filter
  >>                                                      % n: Order
  >>                                                      % f, a:  Desired amplitude response
  >>                                                      % w: Weights
  >>                                                      % ftype = 'low' | 'bandpass' | 'high' | 'stop' 
  >>  ...

A e(e
jω

)

H (z) = ∑
k=0

M

bk z
−k



25
Course: 63744 Digital Signal Processing

(Additional materials)

● Design by positioning zeros and poles, example
● Design via analog prototypes
● Design using optimization methods
● Least Integral-Squared Error
● Design by windowing
● Minimax Weighted Error
● Design by iterative optimization
● Design via analog prototypes, example
● Bilinear transformation method
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Design by positioning zeros and poles, example
● Example,  lowpass IIR filter

 - Poles:  0.8    ±  j0.2

 - Zeros: 0.75  ±  j0.66

|H (e jω )|
Pole

Zero

F = 0

F = Fs/2

Pole
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Design by positioning zeros and poles, example
● Example,  lowpass IIR filter

 - Poles:  0.8    ±  j0.2

 - Zeros: 0.75  ±  j0.66

● MATLAB

 >> P(1,1) = 0.8 + 0.2i;

 >> P(2,1) = 0.8  - 0.2i;

 >> Z(1,1) = 0.75 + 0.66i;

 >> Z(2,1) = 0.75  – 0.66i;

 >>

 >> zplane(Z, P)

 >>

 >> [b,a] = zp2tf(Z, P , 1)

 b = 1.0000   -1.5000    0.9981

 a = 1.0000   -1.6000    0.6800

 >>

 H (z) =
Y ( z)
X ( z)

=
1 − 1.5 z−1

+ 0.9981 z−2

1 − 1.6 z−1
+ 0.6800 z−2
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Design by positioning zeros and poles, example
● Example,  lowpass IIR filter

 - Poles:  0.8    ±  j0.2

 - Zeros: 0.75  ±  j0.66

● MATLAB

 >> 

 >> [h,w] = freqz(b, a, 512);

 >> plot(w/pi, abs(h));

 >> ...

 >> [phi,w] = phasez(b, a, 512)

 >> plot(w/pi, phi);

 >> ...

 >> 
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● MATLAB

 >>  % Filter design method:  Analog prototyping

 >>          % Frequency transformation and filter discretization from the poles

 >>          % and zeros of a classical prototype filter in the continuous domain

 >>  

 >>  [b, a] = butter(n, Wn, ftype);           % Butterworth filter 

 >>                                  % Order: 2n,    Wn: Normalized cuttof frequencies, ftype: filter type

 >>  [b, a] = cheby1(n, Rp, Wp, ftype);   %  Chebyshev Type I filter 

 >>                                  % Order: 2n,    Rp: decibels of peak-to-peak passband ripple 

 >>  [b, a] = cheby2(n, Rs, Ws, ftype);    % Chebyshev Type II filter

 >>                                  % Order: 2n,    Rs: deciBels of stopband attenuation down

 >>                                  %                              from the peak passband value 

 >>  [b, a] = ellip(n, Rp, Rs, Wp, ftype); % Elliptic filter,    Order: 2n

 >>  …                             %  ftype = 'low' | 'bandpass' | 'high' | 'stop' 

 >>                                 % Recall also

 >> [Z, P, K] = tf2zpk(b, a);                       % Z: zeros,  P: poles,  K: gain

 >> y = filter(b, a, x);   % Filter,  y – Output signal,  x – Input signal

H (z) =

∑
k=0

M

bk z
−k

1 +∑
k=1

N

ak z
−k

Design via analog prototypes
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● Digital filter design as optimization problem
● Object of optimization (frequency response of a system)

 Desired:                         Actually obtained:                           

 

● Optimization criterion (unweighted squared error criterion)

 - Least-squares fit (Least Integral-Squared Error - ISE)

Design using optimization methods

H D (e
jω

) H (e jω )

H (e jω ) = H ( z)∣ z=e jω =
Y (z )
X (z)

=
b0 + b1 z

−1
+ ... + bM z

−M

1 + a1 z
−1

+ ... + aN z
−N
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● MATLAB

 >>  % Filter design method:  By approximating a piecewise linear magnitude response

 >>  % Using a least-squares fit to a specified frequency response

 >>  

 >>  [b, a] = yulewalk(n, f, m);    % Recursive IIR digital filter

 >>                                                   % Order: n

 >>                                                   % f, m:  Desired amplitude response

H ( z) =

∑
k=0

M

bk z
−k

1 + ∑
k=1

N

ak z
−k

Design using optimization methods
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● Given desired (ideal) frequency response,                 , what is the best finite h(n) of  
   length  M+1,  n = -M/2 .. M/2,  to approximate it?
● Object of optimization (frequency response of an FIR system)

 Desired:                         Actually obtained:

• Optimization criterion (Least Integral-Squared Error – ISE)

• Since h(n) exists only for  n = -M/2 .. M/2

 → The best finite h(n) to approximate                   in the sense of minimum mean-squared        
        error approximation is truncated hD(n) 

H D(e
jω
)

H (e jω ) = DTFT [h(n)]

HD (e
jω
) = DTFT [hD (n)]

h(n) = hD(n) , −M /2 ≤ n≤ M /2

H (e jω ) = H ( z)∣ z=e jω = b0 + b1 z
−1

+ ... + bM z
−M

HD (e
jω

) H (e jω )

HD (e
jω

)

Least Integral-Squared Error
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● Given desired (ideal) frequency response,                  , what is the best finite h(n) of 
   length  M+1,  n = -M/2 .. M/2,  to approximate it?
● Try to minimize least Integral-Squared Error (ISE) of frequency responses

 (unweighted squared error criterion)

● Since h(n) exists only for  n = -M/2 .. M/2

 i.e., the ISE is minimized by

 → Thus, truncated IDTFT of desired frequency response,                  , best approximates the     
        desired frequency response (in the sense of minimum mean-squared error)

 → The best finite h(n) to approximate the desired frequency response (in the sense of             
        minimum mean-squared error) is truncated hD(n) 

H D(e
jω

)

min
1

2π
∫
−π

π

|HD(e
jω

) − H (e jω )|
2 dω = ϵ

2 H (e jω ) = DTFT [h(n)]

H D(e
jω
) = DTFT [hD(n)]

⇒ ∑
n=−M / 2

M /2

|hD(n) − h(n)|
2
+ ∑

−∞

−M /2−1

|hD (n)|
2
+ ∑
M /2+1

∞

|hD(n)|
2

= ϵ
2        (By Parseval)

h(n) = hD(n) , −M /2 ≤ n ≤ M /2

HD (e
jω

)

Least Integral-Squared Error
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Design by windowing

● Where Gibbs phenomenon comes from?
● Multiplication in time domain is convolution in frequency domain

● Frequency response of truncated response,              , is convolution of ideal frequency              
   response,               , and frequency response of rectangular window,

hD(n) . w (n) ←→
1

2π
∫
−π

π

HD(e
jω
) W (e j (ω−θ )

) d θ

W (e j ω)

H (e jω)

H D(e
jω
)

H D(e
jω
) W (e j ω) H (e jω)

*

W (e j ω) = ∑
n=−M /2

M /2

e− jω n
=

sin((M+1) ω
2

)

sin( ω
2

)
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Design by windowing

● MATLAB

 >>  % Filter design method:  Windowing ideal impulse response

 >>          % Using the specified window

 >> 

 >>  b = fir1(n, Wn, ftype, window)
 >>                                % n: Order, Wn: Normalized cuttof frequencies, ftype: filter type

 >>  …                           % ftype = 'low' | 'bandpass' | 'high' | 'stop' 

 >>                                % window = rectwin(), hann(), hamming(), blackman(), ...

H (z) = ∑
k=0

M

bk z
−k
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Minimax Weighted Error
● Filter design by windows is simple but not optimal
● Alternative criteria can give better results

● Object of optimization: FIR filters with generalized linear phase

 - Type I linear-phase FIR filter (order M, even, length M+1, odd)

● Optimization criterion (minimax or Chebyshev criterion)

 - Minimax fit (minimizing the maximum weighted approximation error)

   => Equiripple approximation

E (ω) =W (ω) [H D(e
jω

) − A e(e
jω

)] HD (e
jω

)  - Desired

min
{he(n): 0 ≤ n≤L}

( max
ω ∈ F

|E (ω)| )

F  is closed subset of  0 ≤ω ≤ π    such that  0 ≤ ω ≤ ωp   and  ωs ≤ ω ≤π

E(ω)     - Error

W (ω)     - Weight

he(n) = he (−n) A e(e
jω
) = ∑

n=−L

L

he(n)e
− jω n

= he(0) + ∑
n=1

L

2 he(n) cos(ω n) , L=M /2
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Design by iterative optimization
● The most popular method: Parks-McClellan algorithm
● Consider the design of Type I FIR filter (order M, even, length M+1, odd)

● Can be delayed by sufficient amount (M/2) to make it causal

● Goal is to approximate the desired response                  with 

H (e jω )= A e(e
jω

)e− jω M /2h(n) = he(n−M /2) = h(M−n)

H D (e
jω

) A e(e
jω

)

he(n) = he (−n) A e(e
jω
) = he(0) +∑

n=1

L

2 he(n) cos(ω n) , L=M /2

[Oppenheim, Schafer]
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Design by iterative optimization
● The most popular method: Parks-McClellan algorithm

● The algorithm

 1. Define passband and stop band regions

 2. Define order, and error weights

 3. Calculate                   and check the result 

 4. Repeat previous step until optimal solution 

● It uses

 - Chebyshev polynomial approximation theory

 - Remez exchange algorithm (procedure of iterative approaching to optimal solution, 3. and 4.)

 - Alternation theorem (determines when the solution is optimal)

A e(e
jω

)
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Design by iterative optimization

● MATLAB

 >>  % Filter design method:  Parks-McClellan algorithm

 >>  % Using equiripple approach over sub-bands of the frequency range

 >>  

 >>  b = firpm(n, f, a, w, type);   % Optimal FIR digital filter

 >>                                                   % n: Order

 >>                                                   % f, a:  Desired amplitude response

 >>                                                   % w: Weights

 >>                                                   % ftype = 'low' | 'bandpass' | 'high' | 'stop' 

 >>  ...
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● IIR filter design steps

 - Choose analog filter family

    * Butterworth

    * Chebyshev Type I

    * Chebyshev Type II

    * Elliptic

 - Choose analog-digital transformation method

    * Impulse invariance (aliasing problem)

    * Bilinear transformation (nonlinear transformation, frequency warping)

 - Procedure

    * Transform digital filter specifications to equivalent analog filter specifications

    * Design analog filter

    * Transform analog filter to digital filter

Design via analog prototypes, example
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● Filter type: discrete-time lowpass filter
● Design method: the bilinear transformation 
● The specifications for the filter to be designed

 - Passband frequency:   ωp  = 0.1 π,   Stop band frequency:   ωs  = 0.3 π
 - Passband ripple:  

 - Stop band ripple: 

 - In terms of parameters   δ1  and  δ2 

 - Define new parameters 

 - Selected filter:  

   Butterworth filter 

 

−1dB ≤ |H (e jω)| ≤ 0dB , |ω | ≤ ωp

|H (e jω)| ≤ −20dB , ωs ≤ |ω | ≤ π

1 − σ1 = 10−1/20
= 0.89125 σ2 = 10−20 /20

= 0.1

k1 =
1

(1 − σ1)
2

= 0.79433 k2 =
1

σ2
2
− 1 = 99

|H a( jΩ)|
2

=
1

1 + (Ω / Ωc)
2N

|H a( jΩ)|2    equals  1.0  when  Ω = 0  and  1 /2  when  Ω = Ωc

Design via analog prototypes, example
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● Converting the critical frequencies  ωp  and  ωs  to their continuous-time counterparts produces

● Determining the order of the filter by the design equation

● Critical (cutoff) frequency

Ωp = 2 tan(
ωp

2
) = 0.3168   rad/smp

Ωs = 2 tan (
ωs

2
) = 1.0191   rad/smp

N =
1
2

log (
k2

k1

)

log (
Ωs

Ω p
)

= 2.4546 → N = 3, 2N = 6

Ωc =
Ωs

k 2

(
1

2 N
)

= 0.4738   rad/smp

Design via analog prototypes, example
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● MATLAB

 >> Rp = 1;                % Passband ripple

 >> Rs = 20;              % Stop band ripple

 >> Wp = 0.3168;    % Passband frequency (continuous time)

 >> Ws = 1.0191;    % Stop band frequency (continuous case)

 >> [N, Wn] = buttord(Wp, Ws, Rp, Rs, 's')  

 >>                             % Filter order, N,  and Critical (cutoff) frequency,  Ωc,  i.e., Wn  

 >>                             % N = 3,  Wn = 4.738

 >>  ...

Design via analog prototypes, example
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● Determine transfer function of analog filter

● Poles are given by

● Take N poles with negative real parts for  Ha(s)

|H a (s )|
2
=

1

1 + (s / jΩc )
2N

sk = Ωc e
j ( π

2
+ π

2N
+

2 π k
2N

)

, k=0,1, ... , 2N−1

s0 = −0.2369 + j 0.4103 = 0.4738 e
j 2π / 3

s1 = −0.4738 + j 0.0000 = 0.4738 e
jπ

s2 = −0.2369 − j 0.4103 = 0.4738 e
− j 2π / 3

● MATLAB

 >> [Z, P, K] = butter(N, Wn, 's')

 P =

  -0.2369 + 0.4103i

  -0.2369 - 0.4103i

  -0.4738 + 0.0000i

 K =   0.1064     % Gain

 >>

Design via analog prototypes, example
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● Transfer function of analog filter

● Transform zeros and poles from s-plane

 (continuous) to z-plane

 

H a(s) =
Ωc

3

(s−s0)(s−s1)(s−s2)

H d(z ) = H a[2
1−z−1

1+z−1 ]= Ωc
3
(1+z−1

)
3

8 (1−z−1
−s0)(1−z−1

−s1) (1−z−1
−s2)

● MATLAB

 >> [num, den] = zp2tf(Z, P, K)

 num =

         0         0         0        0.1064

 den = 

  1.000   0.9476   0.4490   0.1064

 >>

● MATLAB

 >> [Zd, Pd, Kd] = bilinear(Z, P, K,1)

 Zd =

    -1     -1     -1

 Pd =

    0.7300 + 0.3173i

    0.7300  - 0.3173i

    0.6169 + 0.0000i

 Kd =

     0.0083   % Gain

 >>

Design via analog prototypes, example
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H d(z ) =
0.0083+0.0249 z−1

+0.0249 z−2
+0.0083 z−3

1.0000−2.0769 z−1
+1.5343 z−2

−0.3909 z−3

● Transfer function of digital filter

 

● MATLAB

 >> [numd, dend] = zp2tf(Zd, Pd, Kd)

 numd =

    0.0083    0.0249    0.0249    0.0083

 dend =

   1.0000   -2.0769    1.5342   -0.3909

 >> fvtool(numd, dend);

 >> y = filter(numd, dend, x);

H d(z ) = 0.0083
1+3 z−1

+3 z−2
+1 z−3

1−2.0769 z−1
+1.5343 z−2

−0.3909 z−3

ωp(−1 dB) = 0.1 π ωs(−15dB) = 0.3 π

Design via analog prototypes, example
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● How we can map continuous-time filters to discrete-time domain?

 → transformation  Hc(s) → H(z),   s = σ + jΩ,  where  Ω  is the analog frequency

 where  s = F(z)  maps  s-plane  ↔  z-plane

 → every value of  H(z)  is a value of  Hc(s)  somewhere on the s-plane and vice-versa

Bilinear transformation method

H (z) = H a( s) ∣s=F (z)

s = F (z)

z = F −1
(s)

[Oppenheim, Schafer]
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● Let  Hc(s)  be the transfer function of the prototype analog filter
● The transfer function H(z) of the digital filter is obtained by substituting

 into the expression of  Hc(s)

● Solving for  z

Bilinear transformation method

s = F (z) =
2
T d

1 − z−1

1 + z−1

H (z) = H a( s) ∣s=F (z) = H a [ 2
T d

1 − z−1

1 + z−1 ]

s = σ + jΩ

z =

1 +
T d
2
s

1 −
T d
2
s

=

1 + σ
T d
2

+ jΩ
T d
2

1 − σ
T d
2

− jΩ
T d
2

s = σ + jΩ
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● On the unit circle,  |z| = 1,  (σ = 0),                     ,), or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2. or 2.,  the transform becomes

● To derive relation between discrete-time  ω  and continuous-time frequency  Ω

 yielding   

Bilinear transformation method

z = e jω

z =

1 + jΩ
T d
2

1 − jΩ
T d
2

= e jω

s =
2
T d

1 − e− jω

1 + e− jω
= σ + jΩ =

2 j
T d

tan(ω
2

)

Ω =
2
T d

tan (ω
2

) ω = 2 tan −1 (
Ω T d

2 )

z = e jω =>
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● Infinite range of continuous-time           
   frequency  

 is mapped to finite discrete-time           
  frequency range 

● Bilinear transform makes                         
   frequency warping (warped                    
   frequency axis) but leaves the                
   same gain and phase

−∞ < Ω < ∞

− π < ω < π

Bilinear 
transformation 

method

H (e jω )= H a( jΩ )∣
ω=2 tan−1

(Ω T d / 2)

[Oppenheim, Schafer]
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● The design parameter  Td  is usually set to equal 1 to simplify the expressions

Bilinear transformation method

s = 2
1 − z−1

1 + z−1
z =

1 + jΩ
2

1 − j Ω
2

Ω = 2 tan (ω
2

) ω = 2 tan −1
(Ω

2
)
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