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Course: 63744 Digital Signal Processing

Digital filters

● Filters
● DeciBels and cutoff frequency
● Simple IIR lowpass filter
● Simple IIR highpass filter
● Simple IIR bandpass filter
● Simple IIR bandstop filter
● Second order IIR filter
● Linear-phase filters
● Linear-phase FIR filters
● (Additional materials)
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Filters

● Aim

 To separate information in frequency domain by proper construction of frequency response of    
   LTI system. i.e., proper construction of transfer function of LTI system (amplitude and phase        
   characteristic)

● What is filter?

 - A system that is altering signal (its frequency content) in an useful way
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DeciBels and cutoff frequency

● Filter's amplitude response in linear scale and in dB

● A level of  0  corresponds to           dB−∞

|H (e jω)| |H (e jω)|   in  dB

ω
πω

π =
2π f
π
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Simple IIR lowpass filter
● First-order IIR lowpass filter

 K – scaling factor to make gain of  1  at  ω = 0,  HL(1) = 1,  →  K  = (1 – α) / 2

 Zero,  z  =  -1,   pole  z  =  α

H L(z) = K
1 + z−1

1−α z−1
= K

z + 1
z − α

|H L(e
jω

)|

α → 1

y (n) = α y(n−1) + K (x (n) + x(n−1))

α → 1
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Simple IIR lowpass filter
● First-order IIR lowpass filter

● Cutoff frequency

● Design equation

|H L(e
jω

)| 2
=

(1−α)
2

4
(1+e− jω C )(1+e jω C)

(1−αe− jω C )(1−α e jω C)
=

1
2

ω C   from      |H L(e
jω

)| 2
=

1
2

H L(z) = K
1 + z−1

1−α z−1
= K

z + 1
z − α

K =
(1−α)

2

=>  cosω C =
2α

1+α
2

    α =
1−sin ω C

cosω C
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Simple IIR highpass filter
● First-order IIR highpass filter

 K – scaling factor to make gain of  1  at  ω = π,  HH(-1) = 1,  →  K  = (1 + α) / 2

 Zero,  z  =  1,   pole  z  =  α
|HH (e

jω
)|

H H (z ) = K
1 − z−1

1−α z−1
= K

z − 1
z − α

α → 1

y (n) = α y(n−1) + K (x (n)− x (n−1))

α → 1
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Simple IIR highpass filter
● First-order IIR highpass filter

● Cutoff frequency

● Design equation (again)

|H H (e
jω

)| 2
=

(1+α)
2

4
(1−e− jω C)(1−e jω C)

(1−αe− jω C)(1−α e jω C)
=

1
2

ω C   from      |HH (e jω )| 2
=

1
2

H H (z ) = K
1 − z−1

1−α z−1
= K

z − 1
z − α

K =
(1+α)

2

=>  α =
1−sin ω C

cosω C
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● Second-order IIR bandpass filter,                                                       a digital resonator

● Design equations

Simple IIR bandpass filter

H BP (z) =
1−α

2
1−z−2

1 − β (1+α) z−1
+ α z−2

H BP (z) = K
(1+ z−1

)(1−z−1
)

1 − 2r cosθ z−1
+ r2 z−2

where  r = √α ,   cosθ =
β (1+α)

2√α

ω C  is center frequency (not cutoff):    β = cosω C

B  is 3dB bandwidth:     
2α

1+α
2

= cosB

|H BP (e
jω
)|

θy (n) = ?
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● Design a second-order IIR bandpass filter with center frequency,     ωC = 0.4π,  and 
  3dB bandwidth,  B = 0.1π

Simple IIR bandpass filter

ω C = 0.4 π ⇒ β = cos ωC = 0.30901

B = 0.1π ⇒
2α

1 + α
2

= cos (0.1 π)

Design equations:      β = cosωC

H BP (z) =
1 − α

2
1 − z−2

1 − β (1 + α)
−1

+ α z−2

H BP (z) = 0.13673
1 − z−2

1 − 0.53353 z−1
+ 0.72654 z−2

⇒ α1 = 0.72654 , α2 = 1.37638 ?

α1

α2

2α

1+α
2

= cosB
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● Second-order IIR                 
   bandpass filter with           
   center frequency,               
   ωC = 0.4π, and 3dB             
   bandwidth, B = 0.1π

Simple IIR 
bandpass 

filter

α1
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● Second-order IIR bandstop filter

  - zeros at         , poles the same as for 

● Design equations

Simple IIR bandstop filter

H BS( z) =
1+α

2
1 − 2β z−1

+ z−2

1 − β (1+α) z−1
+ α z−2

where  r = √α ,   cosθ =
β (1+α)

2√α

|H BS(e
jω
)|ω C H BP

H BS( z) = K
1 − 2cosθ z−1

+ z−2

1 − 2 r cosθ z−1
+ r2 z−2

α

β

θ

r

1/√2

y (n) = ?

ω C  is center frequency (not cutoff):    β = cosω C

B  is 3dB bandwidth:     
2α

1+α
2

= cosB
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Second order IIR filter

● Homework, visit the following site

  http://www.earlevel.com/main/2013/10/28/pole-zero-placement-v2/

 - Verify amplitude response of the second order IIR filter by manipulating the positions of zeros   
     and poles in the Z plane

 - Write the corresponding transfer functions and difference equations for the selected positions

 - Comment on causality

 - In what case the filter becomes an FIR filter?

  

http://www.earlevel.com/main/2013/10/28/pole-zero-placement-v2/
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Second order IIR filter
● Example of exam task

 A zero-pole diagram, given H(z) of discrete linear time-invariant system is following:

 On the basis of the zero-pole diagram write the transfer function H(z) of this

 system. Is this system stable? You have to justify your answer. Sketch also the 

 amplitude response of this system.

Im (z)

Re (z)

|z| = 1

(0.5, 0)(-0.75, 0)
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Linear-phase filters
● Causal FIR filters (real impulse response, h(n)) can have linear phase

 - Impulse response, h(n), is of finite duration → can be symmetric

 - If impulse response, h(n), is symmetric → linear phase

● Causal IIR filters (real impulse response, h(n)) cannot have linear phase
● - Impulse response, h(n), is of infinite duration → cannot be symmetric

 - Since impulse response, h(n), is not symmetric → non-linear phase
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Linear-phase FIR filters
● It is possible to design an FIR filter with exact linear phase response
● A causal FIR transfer function  H(z) of length  M+1,  order  M,

 has a liner phase, if its impulse response,  h(n),  is symmetric,

 or antisymmetric

● For an FIR filter with a real impulse response, the zeros of H(z) occur in                                         
   complex conjugate pairs

● Since the length can be even or odd, yields four types of linear phase FIR                                     
  transfer functions

H (z ) = ∑
n=0

M

h(n) z−n

h(n) = h(M−n) , 0 ≤ n≤ M

h(n) = −h(M−n) , 0 ≤ n ≤ M
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Linear-phase FIR filters
● Symmetric and anti-symmetric FIR filters are almost the only one                               
  to get linear phase

                                        Odd length (M+1)                 Even length (M+1)

 Symmetric

 Anti-symmetric

Type I: M = 8 Type II: M = 7

Type III: M = 8 Type IV: M = 7
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Linear-phase FIR filters
● Example of exam task

  An impulse response of a digital filter is following:  h(n) = {1, 0, -1}.

  Is this filter with finite or infinite impulse response? Is this filter with linear or

  non-linear phase? What is the order of this filter? Derive transfer function,

  frequency response, amplitude response, phase response, and group delay 

  of this filter.  Sketch zero-pole diagram, amplitude response, phase response,

  and group delay.
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(Additional materials)

● MATLAB and filter visualization and design tool (fvtool, sptool, fdatool)

● Classification of filters

● Simple FIR lowpass filter

● Simple FIR highpass filter

● Linear-phase FIR filters

● Linear-phase FIR filters, Type I, Type II, Type III, Type IV

● Zero locations of linear-phase FIR transfer functions
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MATLAB and filter visualization and design tools 
(fvtool, sptool, fdatool)

● FVTOOL

 - Explore MATLAB's filter visualization and design tools

      MATLAB

      >>  fvtool(b, a);          % Filter Visualization Tool 

      >>  sptool                    % Interactive digital signal processing tool

      >>  

      >>  fdatool                  % Filter Design and Analysis Tool

      >>                                 % It design and analyze filters, and modify existing 

      >>                                 % filter designs

      >>  ...

H ( z) =

∑
k=0

M

bk z
−k

1 + ∑
k=1

N

ak z
−k
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Classification of 
filters

● Usual classification

 - Lowpass

 - Highpass

 - Bandpass

 - Bandstop

● Desired

 - Amplitude responses                        
     with constant-gain                            
     passband characteristics                  
     and with zero gain in their               
     stop bands

 - Phase responses linear

[Proakis, Manolakis]

|H (e jω)|

|H (e jω)|

|H (e jω)|

|H (e jω)|
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● Moving average over two samples

 hL(n)  =  {1/2,  1/2}

 

- Delay of  1/2  sample  

- Zero at  z = -1  (Pole at  z = 0)

Simple FIR lowpass filter

H L(z ) =
1
2
(1+ z−1

) =
z+1
2 z

H L(e
jω
) = e− jω /2 cos(ω /2)

hL(n)

e jω /2
+ e− jω /2

|H L(e
jω

)|1

y (n) =
1
2
(x (n) + x(n−1))

H L(e
jω
) =

1
2
e− jω /2

(e jω /2
+e− jω /2

)

H L(z ) =
1
2
z−1 /2

(z1 /2
+ z−1 /2

)
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● Moving average over two samples

 hL(n)  =  {1/2,  1/2}

 - Filters are characterized by cutoff frequency,       

   defined as one half, 1/2, power point, or  -3dB point

Simple FIR lowpass filter

H L(z ) =
1
2
(1+ z−1

) =
z+1
2 z

H L(e
jω
) = e− jω /2 cos(ω /2)

|H L(e
jω
)| = cos (ω /2)

ω C = 2 arccos(
1

√2
) = π

2

|H (e jω C)|2
=

1
2

max {|H (e jω)| 2
} ⇒ |H |=

1

√2
Hmax

ω C

|H L(e
jω

)|
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● Differentiating over two samples

 hH(n)  =  {1/2,  - 1/2}

 - Zero at  z = 1  (Pole at  z = 0)

 - One half,  1/2,  sample delay

 - Cutoff frequency

Simple FIR highpass filter

H H ( z) =
1
2
(1−z−1

) =
z−1
2 z

H H (e
jω
) = j e− jω /2 sin(ω /2)

|HH (e jω)| = |sin (ω /2)|

ω C = 2 arcsin (
1

√2
) = π

2
     (again)

|H | =
1

√2
Hmax

ω C

hH (n)

|HH (e
jω
)|

1/√2
≈ 0.707

1

y (n) =
1
2
(x (n) − x (n−1))

H H ( z) =
1
2
z−1 /2

( z1 /2
−z−1 /2

)
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Linear-phase FIR filters

● Visit the following site

 https://www.youtube.com/watch?v=KVOkWcknvc4

 

https://www.youtube.com/watch?v=KVOkWcknvc4
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Linear-phase FIR filters, Type I                              
● Length M+1 (odd), order M (even)
● Symmetric

● Pure real (from cosine basis)

● Phase response

● Group delay is constant                         

h(n) = h(M−n)

H (e jω) =∑
n=0

M

h(n)e− jω n
= e− j M ω /2 ~H (ω)

τ G(ω ) =
−dθ (ω )

dω
=
M
2

~H (ω) = h(
M
2

) + 2∑
n=1

M /2

h (
M
2

−n) cos(ω n)

θ (ω )=− ω
M
2

[Oppenheim, Schafer]
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Linear-phase FIR filters, Type II                              
● Length M+1 (even), order M (odd)
● Symmetric

 

● Pure real (from cosine basis)

 (Always zero at)

● Phase response

● Group delay is constant (non-integer delay)                      

h(n) = h(M−n)

H (e jω) =∑
n=0

M

h(n)e− jω n
= e− j M ω /2 ~H (ω)

τ G(ω )=
−d θ (ω )

dω
=
M
2

~H (ω) = 2 ∑
n=1

(M+1)/2

h(
M+1

2
−n) cos(ω (n−

1
2
))

ω = π

θ (ω ) =− ω
M
2

[Oppenheim, Schafer]

Homework:
Verify that
for M=1
→ Simple FIR
    lowpass



27
Course: 63744 Digital Signal Processing

Linear-phase FIR filters, Type III                            
● Length M+1 (odd), order M (even)
● Anti-symmetric

● Pure real (from sine basis)

 (Always zero at)

● Phase response (additional shift)

● Group delay is constant                         

h(n) = − h(M−n)

H (e jω) =∑
n=0

M

h(n)e− jω n
= j e− j Mω / 2 ~H (ω)

τ G(ω ) =
−dθ (ω )

dω
=
M
2

~H (ω) = 2∑
n=1

M /2

h(
M
2

−n) sin (ω n)

θ (ω )=− ω
M
2

+ π
2

π /2

ω = πω = 0

[Oppenheim, Schafer]
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● Example, Type III    h(n) = {1, 1, 0, -1, -1} = {h(0), h(1), h(2), h(3), h(4)}

                                                                              = {h(0), h(1), 0,  -h(1), -h(0)}

● Anti-symmetric

Linear-phase FIR filters, Type III

h(n) = − h(M−n) , M = 4

H (e jω) = ∑
n=0

M

h(n)e− jω n
= e jθ(ω) ~H (ω)

~H (ω) = 2∑
n=1

2

h(4−n) sin (ω n)

= h(0) + h(1)e− jω
− h(1)e− j3 ω

− h(0)e− j 4 ω

= e− j2 ω
(h(0)(e j 2ω

− e− j2 ω
) + h(1)(e jω − e− jω

))

= e− j2 ω j 2 (h(0)sin (2ω) + h(1)sin(ω))

H (e jω) = e− j 2ω e
j π

2 2 (h(0)sin (2ω) + h(1)sin (ω))

θ (ω )= −2 ω + π
2

τ G(ω ) =
−d θ (ω )

dω
= 2

~H (ω ) → ∑ (sin(ω n))
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Linear-phase FIR filters, Type III
● Example, Type III    h(n) = {1, 1, 0, -1, -1} = {h(0), h(1), 0, -h(1), -h(0)}

  

  → Moving average over 3 samples followed by

      the first order differentiator

H (z) = 1 + z−1
− z−3

− z−4

H (z) = (1 + z−1
+ z−2

) (1 − z−2
)

H (z) =
(1 − z−3

)

(1 − z−1
)
(1 − z−2

)
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● Example of exam task           h(n) = {1, 0, -1} = {h(0), h(1), h(2)}

                                                                                     = {h(0), 0, -h(0)}

● Anti-symmetric (Type III)

Linear-phase FIR filters, Type III

h(n) = − h(M−n) , M = 2

H (e jω) = ∑
n=0

M

h(n)e− jω n
= e jθ(ω) |H (e jω)|

= h(0) + h(2)e− j 2ω
= h(0) − h(0)e− j 2ω

= 1 − e− j 2ω

= e− jω
(e jω − e− jω

)

= e− jω j 2 sin (ω)

H (e jω) = e− jω e
j π

2 2sin (ω) θ (ω ) = − ω + π
2

τ G(ω )=
−d θ (ω )

dω
= 1

|H (e jω)| =
~H (ω) = |2 sin (ω)|
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Linear-phase FIR filters, Type IV                            
● Length M+1 (even), order M (odd)
● Anti-symmetric

● Pure real (from sine basis)

● (Always zero at)

● Phase response (additional shift)

● Group delay is constant (non-integer delay)    

h(n) = − h(M−n)

H (e jω) =∑
n=0

M

h(n)e− jω n
= j e− j Mω / 2 ~H (ω)

τ G(ω ) =
−dθ (ω )

dω
=
M
2

~H (ω) = 2 ∑
n=1

(M+1)/2

h(
M+1

2
−n) sin (ω (n−

1
2
))

θ (ω )=− ω
M
2

+ π
2

π /2

ω = 0

[Oppenheim, Schafer]
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Type I Type II Type III Type IV

Odd, symmetric Even, symmetric Even, anti-symmetric Odd, anti-symmetric 

Cosine basis Cosine basis Sine basis Sine basis 

Automatic zeros

∑ cos (ω (n−
1
2
)) ∑ sin (ω n) ∑ sin (ω (n−

1
2
))K+∑ cos (ω n )
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● Typical zero locations

Type I Type II

Type III Type IV

Cannot be
highpass

Cannot be
lowpass

Cannot be
highpass,
lowpass,
bandstop

Can be
highpass,
lowpass,
bandstop,
bandpass

Linear-phase FIR filters
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● Typical frequency responses,  ~H (ω)

Linear-phase FIR filters

∑ cos(ω (n−
1
2
))K +∑ cos(ω n)

∑ sin (ω (n−
1
2
))∑ sin (ω n)

H (e jω) = e− j M ω /2 ~H (ω)
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● An FIR filter with a symmetric impulse response (Type I and II)

 

● Transfer function can be written as

● If using

 since 

 follows 

● A real-coefficient polynomial,  H(z),  satisfying                                                                                            
   this condition is a mirror-image polynomial

Zero locations of linear-phase FIR transfer functions

h(n) = h(M−n)

H (z) = ∑
n=0

M

h(n) z−n = ∑
n=0

M

h(M−n) z−n

m = M − n

∑
n=0

M

h(M−n) z−n = ∑
m=0

M

h(m) z−M +m
= z−M∑

m=0

M

h(m) zm

∑
m=0

M

h(m) zm = H (z−1
)

H ( z) = z−M H (z−1
) For Type III and IV

H (z) = −z−MH (z−1
)

Antimirror-image
polynomial
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Zero locations of linear-phase FIR transfer functions

● An FIR filter with a anti-symmetric impulse response (Type III and IV)

 

● Transfer function can be written as

● If using

 since 

 follows 

● A real-coefficient polynomial,  H(z),  satisfying this condition is 

 a antimirror-image polynomial

h(n) = −h(M−n)

H (z) = ∑
n=0

M

h(n) z−n = −∑
n=0

M

h(M−n) z−n

m = M − n

−∑
n=0

M

h(M−n) z−n = −∑
m=0

M

h(m) z−M+m
= −z−M∑

m=0

M

h(m) zm

∑
m=0

M

h(m) zm = H (z−1
)

H ( z) = −z−M H (z−1
)
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Zero locations of linear-phase FIR transfer functions

● Type II

 (Degree  M  odd)

● Type III and IV

   

● Type III

 (Degree M even)

H (z) = z−M H ( z−1
)

H (−1) = (−1)
−M H (−1) = − H (−1)

⇒ H (−1) = 0 Must have a zero at z =−1

H (z) = − z−MH ( z−1
)

H (1) = − (1)
−M H (1) = − H (1)

⇒ H (1) = 0 Must have a zero at z = 1

H (−1) = − (−1)
−M H (−1) = − H (−1)

⇒ H (−1) = 0 Must have a zero at z =−1
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Zero locations of linear-phase FIR transfer functions
● From the relations

● It follows

 - If  z = z0 is a zero,  z = 1/z0  is also a zero

 - Since  h(n)  is real and  z0  is a zero,  z0*  is also a zero

 - A complex zero that is not on the unit circle is associated with four zeros

 - A complex zero on the unit circle is associated with two zeros as its                                                               
     reciprocal is also complex conjugate

 - A zero on the real line is associated with two zeros

 - Zeros at 1 and -1 do not imply the existence of zeros at other specific points

● Examples

Type I, II:       H ( z) = z−MH (z−1
)

Type III, IV:   H ( z) = − z−MH (z−1
)
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