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Course: 63744 Digital Signal Processing

Transform domain analysis of discrete-
time signals and systems, II

● Transfer function of LTI systems
● Frequency response for rational system functions
● Finite Impulse Response (FIR) systems
● Phase delay
● Finite Impulse Response (FIR) systems
● Infinite Impulse response (IIR) systems
● Group delay
● Infinite Impulse response (IIR) systems
● Stability
● Review of LTI systems – the Big Picture
● (Additional materials)
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Transfer function of LTI systems
● Linear Constant-Coefficient Difference Equations (LCCDE) are

 - General to represent most useful systems, and implementable

 - Linear, time-invariant, and causal with zero initial conditions

● Transfer (system) function (Transfer characteristic) of LTI systems defined       by LCCDE

● For causal systems (real ak and bk, or equivalently real h(n))

1. The roots of the polynomials are either real or complex conjugate pairs

2. The order of numerator cannot be greater than the order of denominator

y (n) = −∑
k=1

N

ak y (n−k ) + ∑
k=0

M

bk x (n−k)

H (z) =
Y (z)
X ( z)

=

∑
k=0

M

bk z
−k

1 +∑
k=1

N

ak z
−k

=
b0

a0

z (N−M )
∏
k=1

M

( z−zk)

∏
k=1

N

( z−pk)
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● Transfer function, H(z), (rational function) of LTI systems 

Frequency response:     H (e jω) =
b0

a0

e jω (N−M )
∏
k=1

M

(e jω−zk )

∏
k=1

N

(e jω−pk )

Amplitude response:   |H (e jω)| = |
b0

a0
|
∏
k=1

M

|e jω−zk|

∏
k=1

N

|e jω−pk|

,

H ( z) =
Y (z)
X (z )

=

∑
k=0

M

bk z
−k

1 +∑
k=1

N

ak z
−k

=
b0

a0

zN−M
∏
k=1

M

(z−zk)

∏
k=1

N

(z−pk)

Frequency response for rational system functions

H (e jω) = H ( z)∣ z=e j ω

 |e jω (N−M )| = 1

H (e jω) = |H (e jω)| . e jθ (ω )

[Oppenheim, Schafer]
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● Transfer function, H(z), (rational function) of LTI systems 

Phase response:           θ (ω ) = arg {
b0

a0

} + ω (N−M ) +∑
k=1

M

arg{e jω−zk}−∑
k=1

N

arg{e jω−pk}

Frequency response for rational system functions

Operator arg (as opposed to ∢)  means unwrapped phase

Frequency response:     H (e jω) =
b0

a0

e jω (N−M )
∏
k=1

M

(e jω−zk )

∏
k=1

N

(e jω−pk )

H (e jω) = |H (e jω)| . e jθ (ω )

[Oppenheim, Schafer]
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Finite Impulse Response (FIR) systems
● The transfer function does not have any poles, except at  z = 0

 - Finite Impulse Response (FIR) filters

● The impulse response is of finite length

● Properties

 - Impulse response,  h(n),  of finite duration, defined simply by bk coefficients

 - Always stable (no feedback connection)

 - Linear phase (can have linear phase)

 - Larger number of coefficients needed

 - Implementation using convolution sum                                                                                                                   
     possible,  bk = h(k),  k = 0, 1, 2, … , N

h(n) = ∑
k=0

M

bk δ(n−k )

H (z) =
Y (z)
X ( z)

=

∑
k=0

M

bk z
−k

1 +∑
k=1

N

ak z
−k

= ∑
k=0

M

bk z
−k
= b0 z

−M
∏
k=1

M

(z−z k)

y (n) =∑
k=0

M

bk x (n−k )

LCCDE equation  (FIR)
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Finite Impulse Response (FIR) systems
● Example, recall moving average

 M = 8

● The transfer function is

h(n)={
1
M
, 0 ≤ n ≤ M−1

0 , otherwisey (n) = 1
M ∑l=0

M−1

x(n−l)

H (z)=∑
n=−∞

∞

h(n) z− n=
1
M
∑
n=0

M−1

z− n=1 + z−1
+ ... + z−M+1

=
1
M

1− z−M

1− z−1

H (e jω) = |H (e jω)| . e jθ (ω )H (e jω ) =
1
M
e
− jω

(M−1)
2 sin (M ω /2)

sin (ω /2)

|H (e jω )|=| 1
M | |

sin(M ω /2)
sin(ω /2) | θ (ω ) = −

(M−1)
2

ω + π r
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Finite Impulse Response (FIR) systems
● Example, recall moving average

 M = 8

● The output, y(n)

H (e jω ) =
1
M
e
− jω

(M−1)
2 sin (M ω /2)

sin (ω /2)

|H (e jω )|= | 1
M | |

sin(M ω /2)
sin(ω /2) | θ (ω ) = −

(M−1)
2

ω + π r

Amplitude response Phase response

y (n)= y (n−1) + 1
M
( x (n)− x (n−M ) )

H (e jω) = |H (e jω)| . e jθ (ω )

H ( z) =
1
M

1 − z−M

1− z−1 →
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Finite Impulse Response (FIR) systems
● Example, recall moving average

 M = 8

● The transfer function is

● The zeros, z(k+1), can be written as

● There are M zeros

● For  k = 0  we have a zero at  z1 = 1

● This zero cancels a pole at  p1 = 1

h(n)={
1
M
, 0 ≤ n ≤ M−1

0 , otherwise

Unit circle

1

H (z) = 1
M

1 − z−M

1 − z−1
=

1
M

z M

z M
(1 − z−M )

(1− z−1
)
=

1
M

(z M − 1)

z M−1
(z−1)

z
(k+1) = e j2 π k / M , k = 0,1,. .. , M−1

y (n) =
1
M ∑l=0

M−1

x(n−l)

H ( z) =∑
n=−∞

∞

h (n) z− n =
1
M
∑
n=0

M−1

z− n=1 + z−1
+ ... + z−M +1

=
1
M

1 − z−M

1− z−1

[Oppenheim, Schafer]
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● Phase delay is negative phase response divided by frequency (i.e., phase response delay 
   in samples at a frequency point)

 - The phase delay gives the time delay in seconds experienced by each sinusoidal              
     component of the input signal

 - For sinusoidal signal

 - Positive                means delay (causal)

Phase delay

τ P(ω ) =
−θ (ω )
ω

x (n) = A cos(ω0n + Φ)

y (n) = A |H (e jω 0)| cos(ω0n + θ (ω 0) + Φ)

y (n) = A |H (e jω 0)| cos(ω0(n +
θ (ω 0)
ω0

) + Φ)

y (n) = A |H (e jω 0)| cos(ω0(n − τP(ω0)) + Φ)

Phase shift 
(or time shift)
In radians

Phase delay
in samples

τ P(ω )

θ (ω 0)
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Finite Impulse Response (FIR) systems
● Example, recall moving average

 M = 8

● The output, y(n), constant delay,  (M – 1)/2, at all frequencies

H (e jω ) =
1
M
e
− jω

(M−1)
2 sin (M ω /2)

sin (ω /2)

|H (e jω )|=| 1
M | |

sin(M ω /2)
sin(ω /2) | θ (ω) = −

(M−1)
2

ω + π r
τ P(ω ) =

−θ (ω )
ω =

M−1
2

= 3.5

Amplitude response Phase response Phase delay

(τ G (ω ) =
− dθ (ω )
dω

=
M−1

2
= 3.5 )

(Group delay)
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Finite Impulse Response (FIR) systems

● Example of exam task

 Derive the frequency, amplitude and phase response of causal moving average filter over   
   three samples. Sketch the amplitude and phase response. Write the difference equation     
   of the filter. What is the delay of the output signal in samples?
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Infinite Impulse Response (IIR) systems

H (z) =
Y (z)
X ( z)

=

∑
k=0

M

bk z
−k

1 +∑
k=1

N

ak z
−k

=
b0

a0

z (N−M )
∏
k=1

M

( z−zk)

∏
k=1

N

( z−pk)

● At least one pole does not cancel with a zero

 - Infinite Impulse Response (IIR) filters

● There is at least one term of the form

● Properties

 - Impulse response,  h(n),  of infinite duration, e.g.,  y(n) = 0.5 y(n-1) + x(n)

 - Feedback connection

 - Can be unstable, e.g.,  y(n) = 1.5 y(n – 1) + x(n)

 - Non-linear phase (can be close to linear)

 - Lower number of coefficients needed

1

1 − a z−1
←→ a nu(n)

y (n)=∑
k=0

M

bk x (n−k )

LCCDE equation (IIR)

−∑
k=1

N

ak y (n−k )
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● Example, “leaky integrator”, the first-order lowpass filter:

● Transfer function, zero-pole diagram

Infinite Impulse Response (IIR) systems

y (n) = a y (n−1) + x (n) , a = 0.8

H (z) =
1

1− a z−1 =
b0

a0

z
z

1
(1 − 0.8 z−1

)
=

b0

a0

z
z − 0.8

, z1= 0, p1= 0.8, a0= 1

H (z) =
b0

1− a z−1

y (n) = 0.8 y (n−1) + x (n)

H (z) =
b0

1− 0.8 z−1

a
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● Example, “leaky integrator”, the first-order lowpass filter:

● Frequency response

● Amplitude response

Infinite Impulse Response (IIR) systems

y (n) = a y (n−1) + x (n) , a = 0.8

H (z) =
1

1− a z−1 =
b0

a0

z
z

1
(1 − 0.8 z−1

)
=

b0

a0

z
z − 0.8

, z1= 0, p1= 0.8, a0= 1

H (e jω) =
b0 e

jω

(e jω− a)

y (n) = 0.8 y (n−1) + x (n)

|H (e jω)|=
b0 |e

jω|

|e jω− a|

( b0 = 1 )

Amplitude response
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Infinite Impulse Response (IIR) systems

● Example, “leaky integrator”, the first-order lowpass filter:
● Frequency response

● Amplitude response

● Normalization factor, b0

H (e jω) =
b0 e

jω

(e jω− a)
a = 0.8

|H (e jω)|=
b0
|e jω|

|e jω− a|

|H (e jω)|=
b0
|e jω|

|e jω− a|
= 1

|H (e jω)|=
b0

|1− a|
=

b0

|1 − 0.8 |
= 1

b0 = |1− 0.8| = 0.2

Amplitude response
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Infinite Impulse Response (IIR) systems

● Example, “leaky integrator”, the first-order lowpass filter:
● Frequency response

● Phase response

H (e jω) =
b0 e

jω

(e jω− a)
a = 0.8

 θ (ω ) = arg {e jω}− arg {e jω−a}

θ (ω ) = ω − arctan
sinω

cosω − a

Phase response



17
Course: 63744 Digital Signal Processing

Infinite Impulse Response (IIR) systems

● Example, “leaky integrator”, the first-order lowpass filter:
● Phase response                                       Phase delay

θ (ω ) = ω − arctan
sinω

cosω − a
τ P(ω ) =

−θ (ω )
ω

Phase response Phase delay
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● Group delay is the negative first derivative of the phase response (i.e., rate of change of  
   the phase response at a frequency point)

 - The group delay gives the time delay in seconds of narrowband frequency packets of the input signal

 

 - For linear phase responses, the group delay and the phase delay are identical

 - Consider a broadband signal as a superposition of narrowband signals (frequency packets) with different 
     center frequencies

    →  Non-linearity of the phase response results in a dispersion in time of the frequency packets in the       
            output signal

Group delay

τ G(ω ) =
− d θ (ω )
dω
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Infinite Impulse Response (IIR) systems

● Example, “leaky integrator”, the first-order lowpass filter:
● Phase response                                              Phase delay and group delay

θ (ω ) = ω − arctan
sinω

cosω − a
τ G(ω ) =

− d θ (ω )
dωτ P(ω ) =

−θ (ω )
ω

Phase response

Phase delay
Group delay
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● Illustration of effects of group delay and attenuation
● Amplitude response of IIR system

● Input signal

x (n) = x 1(n−M−1) + x 2(n−2M−2) + x 3(n)

x 1(n) = w(n) cos(0.25π n)

x 2(n) = w(n) cos(0.5π n − π
2
)

x 3(n) = w (n) cos(0.85π n + π
5
)

w (n)={0.54 − 0.46 cos (2π n /M ) , 0 ≤ n ≤ M
0 , otherwise

x 1(n) x 2(n)x 3(n) M = 60

Infinite Impulse Response (IIR) systems
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x 1(n) x 2(n)x 3(n)

x 1(n)x 2(n)

Input signal, x(n)

Output signal, y(n)

Spectrum of input signal, x(n)

Group delay

Amplitude response

x1(n): ω 1 = 0.25π ,  Delay of x 1(n) ≈ 215 samples

x2(n): ω 2 = 0.50π ,  Delay of x 2(n) ≈ 70  samples

x3(n) : ω 3= 0.85π ,  Delay of x 3(n) ≈ 45  samples
Delays

x 3(n)

Attenuation ?

[Oppenheim, Schafer]

Infinite Impulse Response (IIR) systems
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Stability 

● A causal LTI system is BIBO (Bounded Input Bounded Output) stable if and only if its   
   poles are inside the unit circle

       

∃B x , B y : |x (n) |⩽ B x < ∞ , |y (n)|⩽ B y < ∞

Bouded Input Bounded Output:
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Stability

● Example of exam task

 Causal linear time-invariant system has the following transfer function:

 Find the difference equation of this system. Determine the zeros and poles of this system.  
   Sketch the zero-pole diagram in the Z plane. Is this system stable in BIBO sense? You have  
   to justify your answer. Sketch also the amplitude response of this filter.

H (z) =
1− z−1

1 +1
2
z−2
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Review of LTI systems – the Big Picture

H (e jω) = H ( z)∣
z=e jωy (n)

Y (z) =
b0

a0

z (N−M )
∏
k=1

M

(z−zk )

∏
k=1

N

( z−pk )

X (z)y (n)=−∑
k=1

N

ak y (n−k ) +∑
k=0

M

bk x (n−k)

y (n) = x (n) * h(n) Y (e jω) = X (e jω) . H (e jω)

x (n)*h(n)

y (n)

|H ( z)|

IR

ZTLCCDE

DTFT

|H (e jω)|

|θ (ω)|

DTFT

IDTFT

X (e jω)=∑
n=−∞

∞

x (n)e− jω n

x (n)=
1

2 π
∫
−π

π

X (e jω )e jω ndω

ZT

ZT

IZT

X ( z) = ∑
n=−∞

∞

x(n) z−nanu(n) ←→
1

1 − a z−1

∑
j

a j x (n− j)←→∑
j

a j z
− j X (z)

IZT

∑
j

b j y (n− j)←→∑
j

b j z
− jY (z )
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(Additional materials)

● Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) systems

● Finite Impulse Response (FIR) systems

● Geometric interpretation

● Infinite impulse response (IIR) systems

● Stability

● Phase delay, group delay, MATLAB

● Stability, MATLAB



26
Course: 63744 Digital Signal Processing

● FIR filters

 - If all the ak coefficients are zero

   * The output depends only on a finite number of values of the input.                                               
        Termed also as all-zero, or moving average (MA) filters.

● IIR filters

 - If at least one of the ak coefficients is nonzero:

   (a) Autoregressive (AR) filters

        If all of the bk coefficients except b0 are zero, the output depends only on the current value 
          of the input and a finite number of past values of the output. Termed also as all-pole,           
          purely recursive, or autoregressive (AR) filters. The term “autoregressive” means that the    
          output is approximately a sum of its own past values.

  (b) Autoregressive, moving-average (ARMA) filters

       Both ak and bk coefficients are nonzero, with N ≥ 1 and M > 0.                                                       
        Also termed as pole-zero or autoregressive, moving average (ARMA) filters.

Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) 
systems

H ( z) =
∑
k=0

M

bk z
−k

1 +∑
k=1

N

ak z
−k
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Finite Impulse Response (FIR) systems
● Example

 Consider the finite impulse response, h(n)

 M = 8,  |a| < 1

 - The transfer function is

 - Assuming that a is real and positive, the zeros, z(k+1), can be written as

 

 - For  k = 0  we have a zero at  z0 = a

 - The zero cancels the pole at  p1 = a

 - The output, y(n), can be written as

 - To plot zeros and poles, amplitude and phase 

   response, and phase and group delay, 

   use MATLAB. ROC?, Stability?

h(n)= { a
n , 0≤ n ≤ M−1

0 , otherwise

H (z) = ∑
n=−∞

∞

h(n) z− n= ∑
n=0

M−1

a n z − n =
1− aM z−M

1− a z−1

z(k+1) = ae j2 π k / M , k = 0,1,. .. , M−1

y (n) =∑
k=0

M−1

a k x (n−k )

Unit circle

1

y (n) = a y (n−1) + x (n) − a M x (n−M )
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● The amplitude of frequency response,                                                                                                                 
                 , is product of length of vectors                                                                                                              
   from zeros, Vk, divided by product of                                                                                                                  
   lengths of vectors from poles, Uk

● The phase of frequency response,                                                                                                                        
             , is sum of angles          of vectors                                                                                                               
   from zeros, minus sum of angles                                                                                                                          
   of vectors from poles

 |H (e jω)|=|
b0

a0
|
∏
k=1

M

|e j ω−zk |

∏
k=1

N

|e jω− pk |

=|
b0

a0
|
∏
k=1

M

V k (e
jω
)

∏
k=1

N

U k(e
jω
)

 θ (ω ) = arg {
b0

a0

} + ω (N−M ) +∑
k=1

M

arg{e jω−zk }−∑
k=1

N

arg {e jω− pk }

Geometric interpretation

 θ (ω ) = arg {
b0

a0

} + ω (N−M ) +∑
k=1

M

Θ k (ω)−∑
k=1

N

Φ k(ω)

[Proakis, Manolakis]

Θ k

Φ k

ω

|H (e j ω)|

θ (ω )
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● Example

[Proakis, Manolakis]

θ (ω ) = ω − arctan sinω
cosω− 0.8

H ( z) = 1

1− 0.8 z−1
=

z
z − 0.8

H (e jω) = e jω

e jω − 0.8

|H (e jω)|=
V 1(e

j ω
)

U 1(e
jω
)
=

|e jω|

|e jω− 0.8|

|H (e jω)| = 1

√1.64 − 1.6cosω

|H (e jω)|

θ (ω)

0 1

Re(z)

Im(z)

ω = π
4

|H (0)|=
1

0.2
= 5

|H (
π
4
)|=

1
0.71

= 1.4

π
4

π
4

θ (0) = 0 − 0= 0

θ ( π
4
) = π

4
− 1.7 =−0.91

 For a demo see: https://engineering.purdue.edu/VISE/ee438/demos/

0.8

z 1= 0, p 1= 0.8

θ (ω ) = Θ 1(ω)− Φ 1(ω)

y (n)= 0.8 y (n−1) + x (n)

ω

ω

Geometric interpretation

https://engineering.purdue.edu/VISE/ee438/demos/
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● Example, 2nd order IIR system, a digital resonator 

● Transfer function

 

●  The output,  y(n),  can be written as

H ( z) =
b0

a0

z2

( z−p1)(z−p2)
, z1,2 = 0, p1,2= r e

± jω 0 , a0= 1

H ( z) = b0

z2

z2

1

(1 − p1 z
−1
)(1 − p2 z

−1
)
=

b0

(1− r e jω 0 z−1
)(1− r e− jω 0 z−1

)

y (n) = (2 r cosω 0) y(n−1) − r2 y (n−2) + b 0 x (n)

H ( z) =
b0

1− ( p 1+ p 2) z
−1
+ p 1 p 2 z

−2

Infinite Impulse Response (IIR) systems

H ( z) =
b0

1− (2r cosω 0) z
−1
+ r2 z−2

p 1

p 2

z 2

z 1

[Proakis, Manolakis]

Real numbers
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● Example, 2nd order IIR system, a digital resonator

 

● Transfer function

H (z) =
b 0 z z

(z−r e jω 0)(z−r e− jω 0)

H ( z) =
b0

a0

z2

(z− p1)( z− p2)
, z1,2 = 0, p1,2= r e

± j ω0 , a0 = 1, r = √2
2
, ω 0=

π
4

Infinite Impulse Response (IIR) systems

H (z) =
b0

1− (2r cosω 0) z
−1
+ r2 z−2

=
b0

1− z−1
+ 0.5 z−2

→ y (n)= y (n−1) − 0.5 y (n−2) + b 0 x (n)

H (z) =
b 0 z z

(z−√
2

2
e
j π

4 )(z−√
2

2
e
− j π

4 )

r

−ω 0

r

ω 0
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Infinite Impulse Response (IIR) systems
● Example, 2nd order IIR system, a digital resonator

 

● Frequency response

● Amplitude response

H (z) =
b0

a0

z2

(z− p1)( z− p2)
, z1,2 = 0, p1,2= r e

± j ω0 , a0 = 1, r = √2
2
, ω 0=

π
4

H ( z) =
b0

1− (2r cosω 0) z
−1
+ r2 z−2

=
b0

1− z−1
+ 0.5 z−2

→ y (n) = y (n−1) − 0.5 y (n−2) + b 0 x (n)

H (e jω) =
b 0 e

jω e jω

(e jω−r e jω 0)(e jω−r e− jω 0)

|H (e jω)|=
b 0
|e jω||e jω|

|e jω−r e jω 0||e j ω−r e− jω 0|
=

b 0

U 1(e
jω
) U 2(e

jω
)

U 1(e
jω
) = √1 + r 2

− 2r cos(ω 0+ω)

U 2(e
jω
) = √1 + r 2

− 2r cos(ω 0−ω)

( b 0 = 1 )

Amplitude response
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● Example, 2nd order IIR system, a digital resonator
● Frequency response

● Amplitude response

● Normalization factor, b0

H (e jω) =
b 0 e

jω e jω

(e jω−r e j ω 0)(e j ω−r e− jω 0)

|H (e jω 0)| =
b 0

(1−r )√1+r 2
−2r cos(2ω 0)

= 1

b 0 =(1−
√2
2
)√1+ 1

2
−2 √2

2
cos(2 π

4
) = 0.3587

Infinite Impulse Response (IIR) systems

|H (e jω)| =
b 0
|e jω||e j ω|

|e j ω−r e jω 0||e jω−r e− jω 0|

|H (e jω 0)| =
b 0 |e

jω 0||e jω 0|

|e jω 0−r e jω 0||e jω 0−r e− jω 0|
= 1

|H (e jω 0)| =
b 0

|1−r ||1−r e
− j2ω 0|

= 1

r = √2
2
, ω 0=

π
4

Amplitude response
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● Example, 2nd order IIR system, a digital resonator
● Frequency response

● Phase response  

 θ (ω ) = arg {e jω} + arg{e jω}− arg {e jω−r e jω 0}− arg{e jω−r e− jω 0}

H (e jω) =
b 0 e

jω e jω

(e jω−r e j ω 0)(e j ω−r e− jω 0)

 θ (ω ) = ω + ω − Φ 1(ω )− Φ 2(ω )

Φ 1(ω ) = arctan [
sinω − r sinω 0

cosω − r cosω 0

]

Infinite Impulse Response (IIR) systems

r = √2
2
, ω 0=

π
4

Phase response

Φ 2(ω ) = arctan [
sinω + r sinω 0

cosω − r cosω 0

]
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● Example, 2nd order IIR system, a digital resonator
● Phase response

                                                                   Phase delay

    

 

 

τ P(ω ) =
−θ (ω )
ω

Phase response

Infinite Impulse Response (IIR) systems

r = √2
2
, ω 0=

π
4

Phase delay

θ (ω ) = ω + ω − arctan [
sinω − r sinω 0

cosω − r cosω 0

] − arctan [
sinω + r sinω 0

cosω − r cosω 0

]
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● Example, 2nd order IIR system, a digital resonator
● Phase response

                                                                      Phase delay and group delay

    

 

        

τ P(ω ) =
−θ (ω )
ω τ G (ω ) =

− d θ (ω )
dω

Group delay

Phase delay

Phase response

Infinite Impulse Response (IIR) systems

r = √2
2
, ω 0=

π
4

θ (ω ) = ω + ω − arctan [
sinω − r sinω 0

cosω − r cosω 0

] − arctan [
sinω + r sinω 0

cosω − r cosω 0

]
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Stability

∃B x , B y : |x (n) |⩽ B x < ∞ , |y(n)|⩽ B y < ∞

∑
k=−∞

∞

|h (k)| < ∞

● An LTI system is said to be Bounded Input Bounded Output (BIBO) stable if and         
   only if every bounded input produces a bounded output

 

● An LTI system is stable (               ) if and only if

 → (Absolute summability of h(k)                                                                                                                
         implies the existence of DTFT)

● The system can give meaningful output only if it is stable

y (n) = ∑
k=−∞

∞

h(k )x (n−k )

| y (n)| = | ∑
k=−∞

∞

h(k )x (n−k )|
| y (n)| ≤ ∑

k=−∞

∞

|h(k )||x (n−k )|

| y (n)| ≤ B x ∑
k=−∞

∞

|h(k )| ≤ B y

B y < ∞
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Stability
● A transfer function does not uniquely specify a system (need to know ROC)

● Properties of system suggests properties of ROC

 - For causal LTI systems (right sided), the impulse response satisfies the following condition

 - ROC for finite-duration impulse responses (z plane, except z = 0)

 - ROC for infinite-duration impulse responses (|z| > r)

● An LTI system is causal if and only if the ROC of the transfer function is the exterior of circle      
   of radius              , including the point                (1.)

h(n) = 0, for n < 0

…...

r < ∞ z = ∞

[Proakis, Manolakis]
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Stability
● Stability of an LTI system expressed in terms of the characteristics of the transfer      
   function, H(z)
● A necessary and sufficient condition for an LTI system to be BIBO stable is

● This condition implies that H(z) must contain the unit circle within its ROC

 Since 

 follows

 Evaluating on the unit circle (|z| = 1)   →                                              →  

 → The unit circle is contained in the ROC of  H(z)  →  (DTFT exists)

● An LTI system is BIBO stable if and only if the ROC of the transfer function, H(z), includes the     
   unit circle (2.)

∑
k=−∞

∞

|h(k )| < ∞

H ( z) = ∑
n=−∞

∞

h(n) z−n

|H ( z)| = | ∑
n=−∞

∞

h (n) z−n| ≤ ∑
n=−∞

∞

|h(n) z−n| = ∑
n=−∞

∞

|h(n)|| z−n|

|H ( z)| ≤ ∑
n=−∞

∞

|h (n)| |H (e jω)|  exists
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Stability 

● A causal (1.) LTI system is BIBO (Bounded Input Bounded Output) stable (2.) if and       
   only if its poles are inside the unit circle,  |pk| < 1,     for k = 1,2, …, N

 -  The region of convergence (ROC) cannot contain any pole since  H(z) is infinitely large at any     
       pole

 -  (1.)  An LTI system is causal if and only if the ROC of the transfer function is the exterior of         
              circle of radius              , including the point          

 -  (2.)  An LTI system is BIBO stable if and only if the ROC of the transfer function, H(z), includes    
              the unit circle

       

r < ∞ z = ∞

∃B x , B y : |x (n) |⩽ B x < ∞ , |y (n)|⩽ B y < ∞

Bouded Input Bounded Output:
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Stability
● An LTI system with poles on the unit circle is not stable (marginally stable)
● It produces an unbounded response when                                                                                                                   
   excited by an input signal that also has a                                                                                                                      
   pole at the same position on the unit circle         

● Example, determine the step response of                                                                                                                     
   the following causal system 

 The transfer function                                                              contains a pole at  z = 1 (unit circle)

 Input signal,                                                                              unit step signal

 

 The Z transform of x(n)                                                           also contains a pole at  z = 1

 Since                                                                                                                          a double pole at  z = 1

 The inverse Z transform                                                                    which is a ramp sequence   

y (n) = y(n−1) + x (n)

H ( z) =
1

1− z−1

x (n) = u(n)

X (z ) =
1

1 − z−1

Y ( z) = H (z ) X (z) =
1

(1− z−1
)

2

y (n) = (n + 1) u(n)

+

z−1

x(n) y(n)

1
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H ( z) =
∑
k=0

M

bk z
−k

1 +∑
k=1

N

ak z
−k

= K
(z−z1)(z−z2) ... (z−zM )

(z−p1)(z−p2) ... (z−pN )

● MATLAB

 >>  [b, a] = zp2tf(Z, P, 1);                               % Convert Zero-pole-gain parameters to Transfer function

 >>                        

 >>  [h, w] = freqz(b, a, 512);                     % h - Frequency response, w – corresponding frequencies

 >>  [phi, w] = phasez(b, a, 512);                   % phi - Phase response, w – corresponding frequencies

 >>  

 >>  [phd, w] = phasedelay(b, a, 512);         % phd - Phase delay, w – corresponding frequencies

 >>  [gd, w] = grpdelay(b, a, 512);                % gd - Group delay, w – corresponding frequencies

 >>  plot(w/pi, phi, w/pi, phd, w/pi, gd);    % Plot Phase response, Phase delay, Group delay

 >>  ...

Phase delay, group delay, MATLAB
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Stability, MATLAB

● MATLAB

 >> 

 >>  [b, a] = zp2tf(Z, P, 1);          % Convert Zero-pole-gain parameters to Transfer function

 >>

 >>  flag = isstable(b, a);             % If the poles are inside the unit circle, flag = true

 >>  

H ( z) =
∑
k=0

M

bk z
−k

1 +∑
k=1

N

ak z
−k

= K
(z−z1)(z−z2) ... (z−zM )

(z−p1)(z−p2) ... (z−pN )
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