Transform-domain analysis of discrete-time signals and systems, I

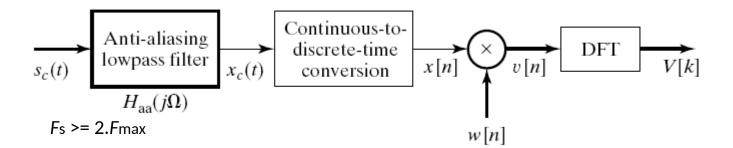
- Introduction
- Fourier analysis of signals using DFT
- Estimating frequency spectrum
- Frequency domain analysis of signals
- Windowing
- Frequency domain analysis of signals summary
- Frequency domain analysis of signals
- Joint time-frequency analysis
- Short Term Fourier Transform (STFT) -> spectrogram
- (Additional materials)

Introduction

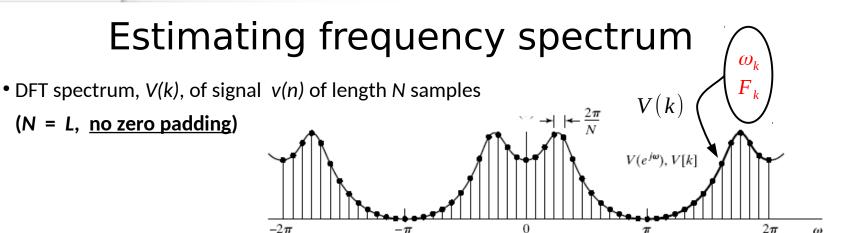
- The DFT is useful tool for frequency analysis of signals
- Only signals of finite length could be analyzed
- In many spectrum analysis applications the signals inherently have finite length
- Inconsistency between the finite-length requirements of the DFT and the reality of indefinitely long signals can be accommodated through the following concepts
 - Higher number of samples to analyze (improving frequency domain resolution)
 - Zero padding (improving frequency domain precision, better representation of details)
 - Windowing (reducing leakage)
 - Time dependent Fourier transform (Short Term Fourier Transform \rightarrow spectrogram)
 - (Averaging (improving the Signal-to-Noise Ratio (SNR))

Fourier analysis of signals using DFT

• Steps in analyzing frequency content of a continuous-time signal with DFT



- Anti-aliasing lowpass filter
- Sample and quantize
- Discrete-time signal, x(n), of infinite duration
- Window to limit the duration of the signal x(n), v(n) = x(n).w(n), where w(n) is the window of length L to limit the duration of the signal
- The signal v(n) could be <u>zero padded</u> to the length N, *i.e.*, $L \rightarrow N$
- Take DFT of the resulting signal v(n) to get its spectrum V(k)



• The k-th component in the frequency domain is a frequency **bucket** or bin $F_s/2$ F_{s}

 $-\pi$

 \rightarrow Frequency F (or ω) of k-th bucket (each bucket corresponds to a frequency, not a range of frequencies):

$$\omega_{k} = k \frac{2\pi}{N}, \quad k=0,1,...,N-1$$

$$F_{s} \text{ is sampling frequency}$$

$$F_{k} = k \frac{F_{s}}{N}, \quad k=0,1,...,N-1, \quad F_{s} \text{ relates to: } \omega = 2\pi, \quad f=1 \qquad k = \frac{N}{2} \rightarrow \frac{F_{s}}{2}, \quad \omega = \pi, \quad f = \frac{1}{2}$$

Step between two consecutive buckets (quantization in frequency)

 \rightarrow Frequency resolution, ΔF_R , $\Delta \omega_R$, is proportional to the number of samples, **N** = L !

$$\Delta F_R = \frac{F_S}{N} \qquad \Delta \omega_R = \frac{2\pi}{N}$$

Course: 63744

Digital Signal Processing

[Oppenheim, Schafer]

ω

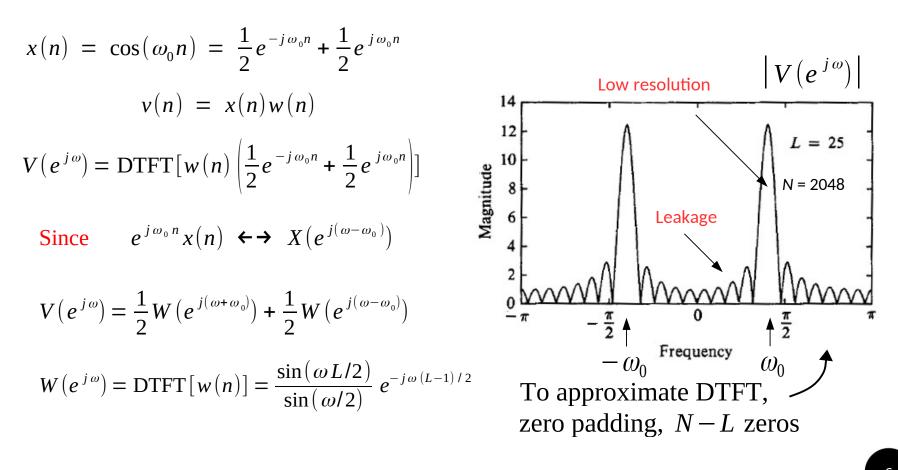
F

Estimating frequency spectrum

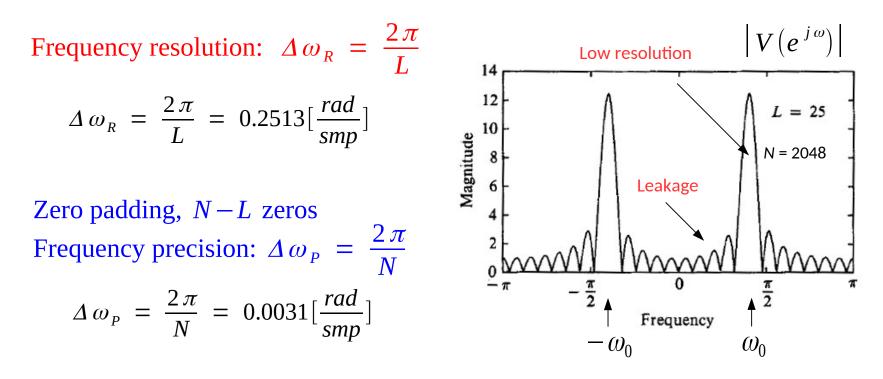
Objectives

- To improve frequency domain resolution
- To improve frequency domain **precision** (zero padding, $L \rightarrow N$, *i.e.*, better representation of details)
- To reduce leakage
- To track changes of spectrum over time
- (To improve Signal-to-Noise Ratio (SNR))

• Sinusoid signal, the effect of windowing (rectangular window, length *L*)



• Sinusoid signal, the effect of windowing (rectangular window, length *L*)

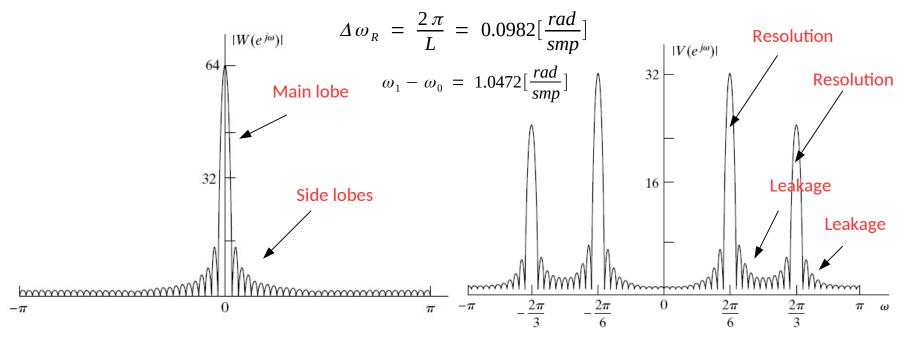


! Distinguish between *frequency resolution*(L) and *frequency precision*(N) !

Digital Signal Processing

• Two sinusoids, $\omega_0 = 2 \pi/6$, $\omega_1 = 2 \pi/3$, amplitudes: A0 = 1, A1 = 0.75

- Rectangular window, w(n), of length L = 64 samples
- -Fs = 10 k smp/sec
- Amplitude spectra (DTFTs) of the window, w(n), and of the signal, v(n)

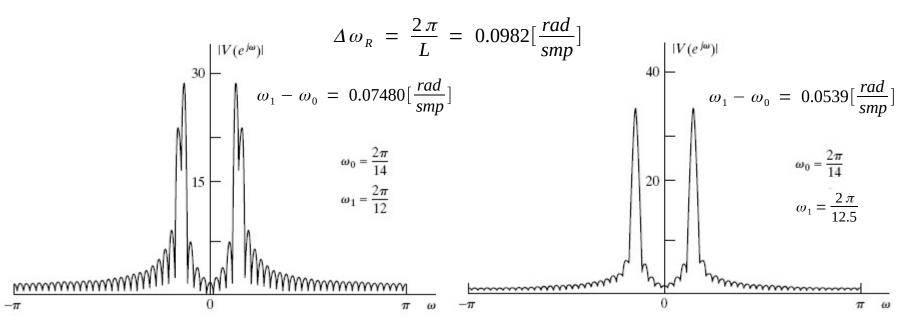


• Assume N = 2048, Frequency precision = ? Frequency resolution, ΔF_{R} , = ?

Digital Signal Processing

• Left, two frequencies are very close, they affect each other amplitude

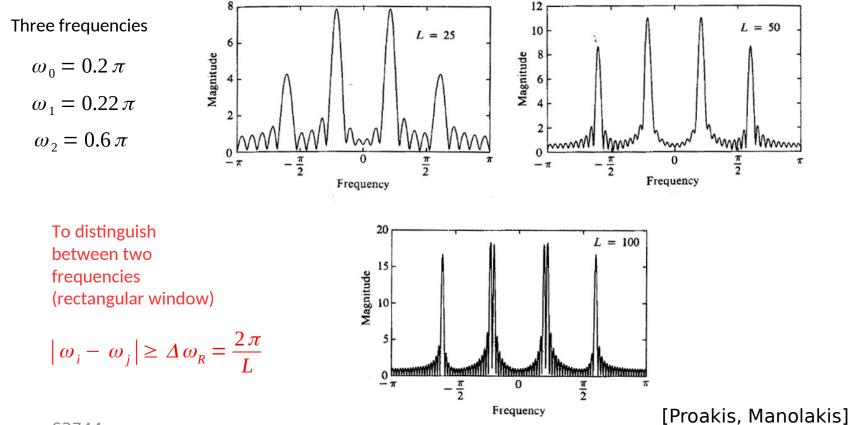
• Right, two frequencies are too close to be resolved (low resolution)



• Desired: high resolution of frequency spectrum, high frequency precision, and low leakage (low side lobes of spectrum)

• Frequency spectrum resolution, how to improve it?

- Using longer length, L, of weighting window, w(n); example

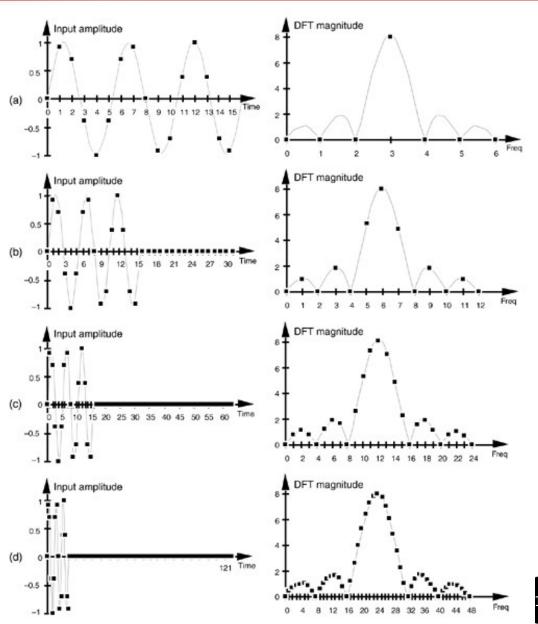


10

Course: 63744

- Frequency precision, how to improve it?
 - Zero padding, larger number of samples, *N*, to compute the DFT, better interpolation of spectrum only
 - (a) 16 samples
 - (b) 32 samples (16 zeros)
 - (c) 64 samples (48 zeros)
 - (d) 128 samples (112 zeros)
- Task

Calculate frequency precision in each case and frequency resolution in terms of radians



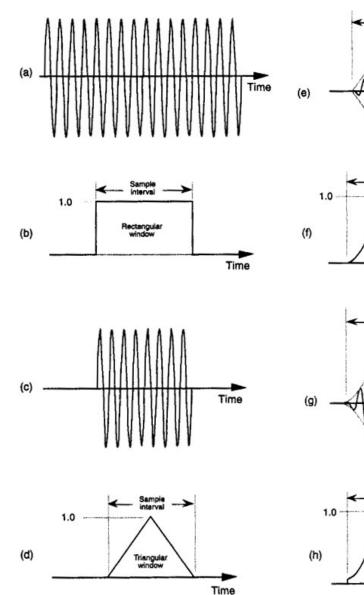
Course: 63744

[GDSP]

• Example of exam task

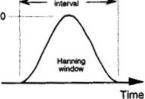
- Discrete time signal x(n) was obtained using sampling of analog signal $x_a(t)$ of length Tseconds using sampling frequency Fs = 1 / T. How does frequency resolution ΔF_R (in Hz) of the Discrete Fourier Transform (DFT) depend on sampling frequency? (Assume that the length of the DFT fits the length of the signal x(n).)
 - A: Higher sampling frequency, Fs, increases frequency resolution.
 - B: Higher sampling frequency, Fs, decreases frequency resolution.
 - C: Frequency resolution does not depend on sampling frequency, Fs.

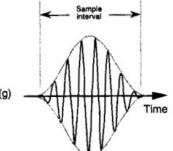
- Leakage, how to reduce it?
 - (how to minimize sample interval end-point discontinuities?)
 - Using windows other than rectangular
 - * Triangular
 - * Hanning
 - * Hamming

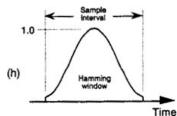


Time Sample

Sample







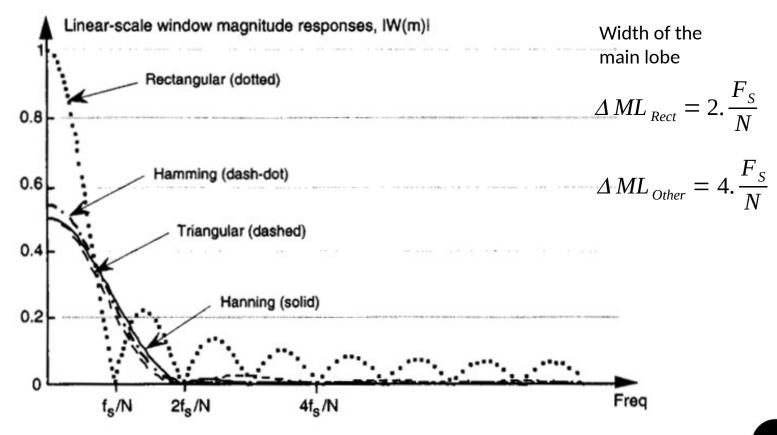
[Lyons] Course: 63744

Coefficients of window functions

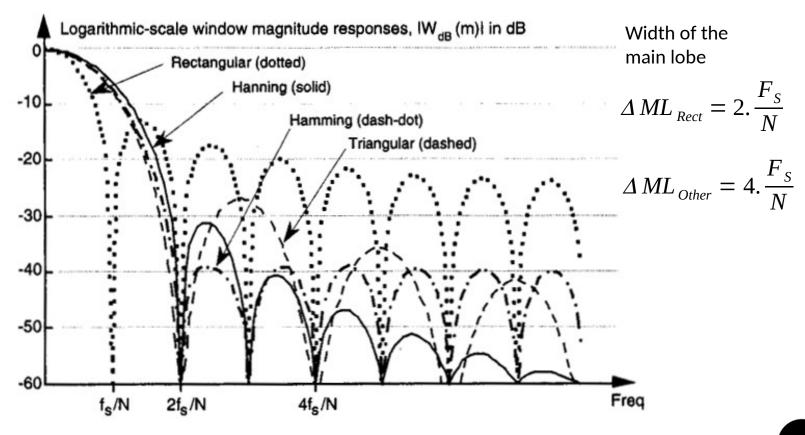
Rectangular window $w(n) = 1, \quad n = 0, 1, 2, ..., L-1$ Triangular window $w(n) = \begin{cases} \frac{n}{L/2}, & n = 0, 1, 2, ..., L/2 \\ 2 - \frac{n}{L/2}, & n = L/2 + 1, L/2 + 2, ..., L-1 \end{cases}$ Hanning (Hann) window $w(n) = 0.5 - 0.5 \cos(\frac{2\pi n}{L}), \quad n = 0, 1, 2, ..., L-1$ Hamming window $w(n) = 0.54 - 0.46 \cos(\frac{2\pi n}{L}), \quad n = 0, 1, 2, ..., L-1$

14

• Linear-scale window amplitude spectra, |W(k)| (N = L)

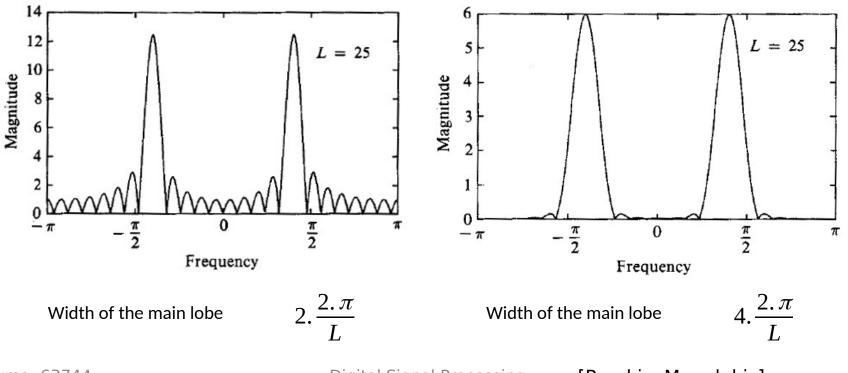


• Logarithmic-scale window amplitude spectra, $|W_{dB}(k)|$ in dB (N = L)



- There is a trade-off between the width of the main lobe of the weighting function |W(k)| and the relative amplitude of the main lobe to the side lobes of the weighting function |W(k)|
- Resolution is influenced by the width of the main lobe
 - Rectangular window has the narrowest main lobe
 - \rightarrow Higher resolution
 - Other windows have wider main lobes
 - \rightarrow Lower resolution
- Leakage is influenced by the relative amplitude of the main lobe to the side lobes
 - Rectangular window has the highest side lobes relative to the main lobe
 - \rightarrow Higher leakage
 - Other windows have lower side lobes relative to the main lobe
 - \rightarrow Lower leakage

- Sinusoid signal, the effect of windowing
 - Left, amplitude spectrum using rectangular window, *L* = 25 samples
 - Right, amplitude spectrum using Hanning window, *L* = 25 samples



Digital Signal Processing

Frequency domain analysis of signals - summary

- How to better estimate spectrum using Discrete Fourier Transform?
 - \rightarrow Sample longer signal segment (higher number of samples)
 - * Using longer weighting function, higher *L* (higher resolution)
 - * Zero padding, N L (better interpolation of spectrum only, i.e., higher precision)
- How to improve resolution and reduce leakage?
 - * Frequencies that are close
 - \rightarrow rectangular window with narrow main lobe (higher resolution)
 - * Frequencies that are apart
 - → Hamming window with lower but constant side lobes (lower leakage close to the frequencies of interest)
 - → Hanning window with side lobes dropping asymptotically (lower leakage far from the frequencies of interest)
- How to improve the signal to noise ratio (SNR)?
 - \rightarrow Average many successive spectra

• Example of exam task

Is it possible to detect (to distinguish) the two frequencies of the following signal:

$$x(n) = \sin(\pi \ 0.2 \ n) + \sin(\pi \ 0.22 \ n)$$

if prior to calculation of the Discrete Fourier Transform (DFT) the rectangular window of length N = 100 samples was used?

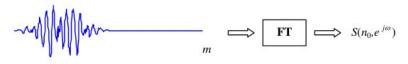
- A: Yes, it is possible.
- B: No, it is not possible, otherwise it is, if we use one of the advanced windows, for example, Hanning window.
- C: No, it is not possible at all.

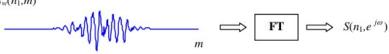
Joint time-frequency analysis

- Amplitude spectrum of a signal only reflects which frequencies exist during the total observation interval, because the Fourier transform integrates frequency components over the total observation interval
- Stationary signals
 - * Their frequency content does not change over time
 - * Amplitude spectrum is a suitable representation
- Non-stationary signals
 - * Their frequency content does change over time
 - * Frequent changes are bringing important information (speech, music, other signals, ...)
 - * It is important to provide information on when in time different frequencies of a signal occur
 - \rightarrow Perform frequency analysis on short signal segments and move over signal
 - = Short Term Fourier Transform (STFT) spectrogram

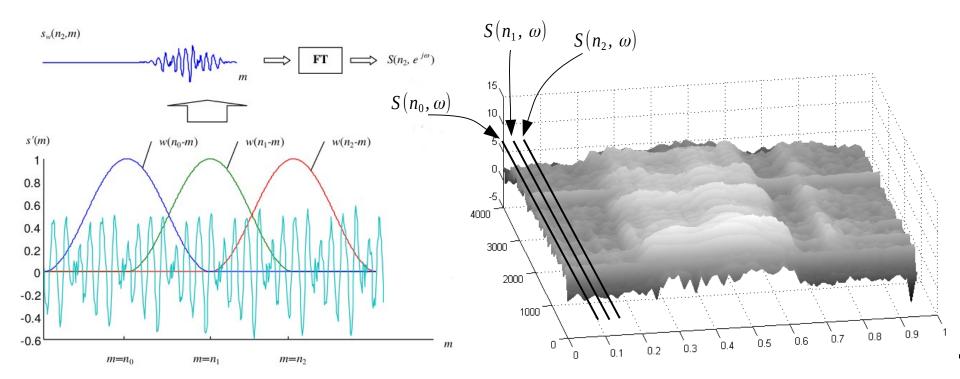
Short Term Fourier Transform (STFT) -> spectrogram

 $s_w(n_0,m)$



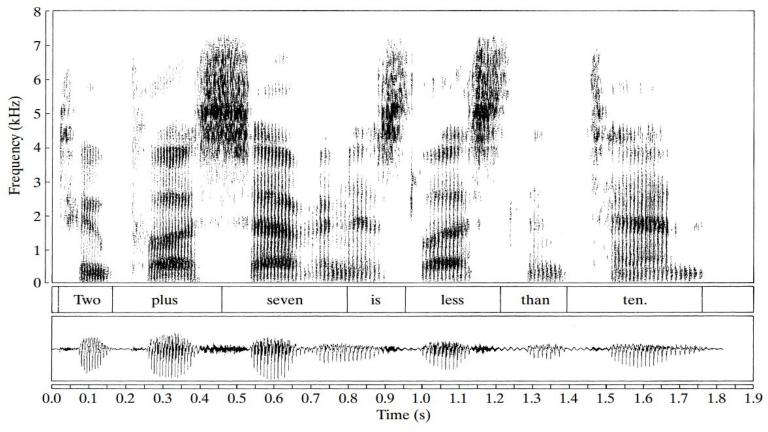


- Divide a signal into short segments
- Calculate amplitude spectrum for each segment
- Compose time series of squared spectra (power spectra)
- \rightarrow Spectrogram
- Spectrogram of word "devet"



Short Term Fourier Transform (STFT) - spectrogram

• Spectrogram of the speech signal (Fs = 16.000 smp/sec; Hamming window, w(n), of duration 6.8 sec, or, L = 108; time increment 16 samples, or 1ms)



• For a demo see: <u>https://engineering.purdue.edu/VISE/ee438/demos/</u>

Digital Signal Processing

(Additional materials)

- Frequency domain analysis of signals
- Windowing
- DTFT of windowed (rectangular window) sinusoid signal
- Improving Signal to Noise Ratio (SNR)

- What actually is going on?
- Ideal case (L = 64)- Examples (Fs = 32 k smp/sec, L = 32) 16 Ideal case, F = 8.0 kHzInput frequency = 3.0 cycles m = 4 analysis frequency **DFT** spectrum 0.8 0.6 0.4 Freq 3 7 8 9 10 11 12 4 13 0.2 (kHz) 0 -0.2 Time Real picture, F = 8.5 kHz -0.4-0.6 -0.8 10.17 **DFT** spectrum -1DFT output magnitude 35 Freq 3 7 8 9 10 12 13 4 11 **DFT** spectrum 30 (kHz) 25 Real picture, F = 8.75 kHz 20 14.05 15 **DFT** spectrum 10 5.15 5 0 0 10 12 14 16 18 20 22 24 26 28 30 12 13 Freq (Freq) 5 7 8 9 10 11 3 6

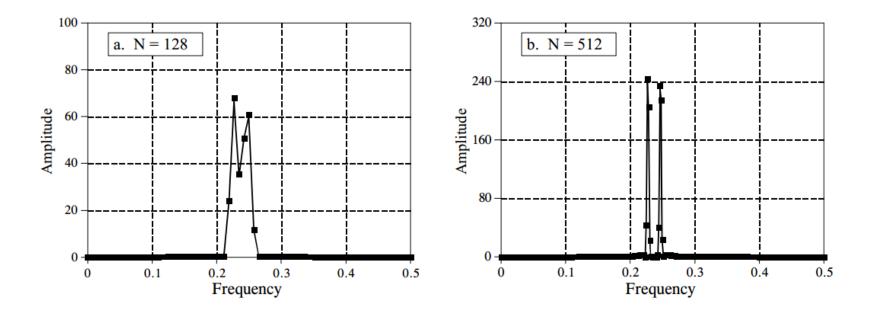
Course[GDSP]4

Digital Signal Processing

(kHz)

- Frequency spectrum resolution, how to improve it?
 - The longer the DFT, the better ability to separate closely spaced features
 - A 128 point DFT cannot resolve the two peaks, a 512 point DFT can

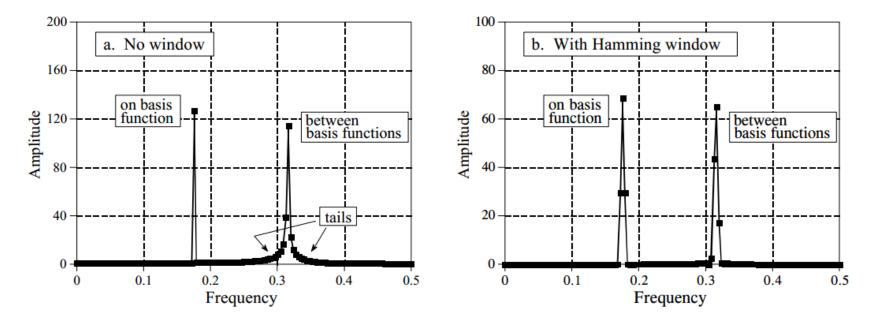
(L = N)



- Example of effect using Hanning window
 - Lower leakage, lower resolution



- Example using Hamming window
 - The second sine wave has a frequency between two of the basis functions
 - Lower leakage



DTFT of windowed (rectangular window) sinusoid signal

$$x(n) = \cos(\omega_{0}n) = \frac{1}{2}e^{-j\omega_{0}n} + \frac{1}{2}e^{j\omega_{0}n}$$

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \pi \left[\delta\left(\omega - \omega_{0} + 2\pi k\right) + \delta\left(\omega + \omega_{0} + 2\pi k\right)\right] \longrightarrow (n) = x(n)w(n)$$
Rectangular window, w(n)

$$w(n) = \begin{bmatrix} 1, & 0 < n < L - 1 \\ 0, & \text{otherwise} \end{bmatrix}$$

$$W(e^{j\omega}) = \frac{1}{2\pi}\int_{-\pi}^{\pi} X(e^{j\theta}) W(e^{j(\omega-\theta)}) d\theta$$

$$V(e^{j\omega}) = \frac{1}{2\pi}\int_{-\pi}^{\pi} X(e^{j\theta}) W(e^{j(\omega-\theta)}) d\theta$$

$$V(e^{j\omega}) = \frac{1}{2}W(e^{j(\omega+\omega_{0})}) + \frac{1}{2}W(e^{j(\omega-\omega_{0})})$$

$$W(e^{j\omega}) = \frac{1}{2\pi}\int_{-\pi}^{\pi} X(e^{j\omega}) W(e^{j(\omega-\omega_{0})}) d\theta$$

$$V(e^{j\omega}) = \frac{1}{2}W(e^{j(\omega+\omega_{0})}) + \frac{1}{2}W(e^{j(\omega-\omega_{0})})$$

$$W(e^{j\omega}) = \frac{1}{2\pi}\int_{-\pi}^{\pi} U(e^{j(\omega-\omega_{0})}) d\theta$$

$$V(e^{j\omega}) = \frac{1}{2}W(e^{j(\omega-\omega_{0})}) + \frac{1}{2}W(e^{j(\omega-\omega_{0})})$$

$$W(e^{j\omega}) = \frac{1}{2\pi}\int_{-\pi}^{\pi} U(e^{j(\omega-\omega_{0})}) d\theta$$

$$V(e^{j\omega}) = \frac{1}{2}W(e^{j(\omega-\omega_{0})}) + \frac{1}{2}W(e^{j(\omega-\omega_{0})})$$

$$W(e^{j\omega}) = \frac{1}{2\pi}\int_{-\pi}^{\pi} U(e^{j(\omega-\omega_{0})}) d\theta$$

$$V(e^{j\omega}) = \frac{1}{2}W(e^{j(\omega-\omega_{0})}) + \frac{1}{2}W(e^{j(\omega-\omega_{0})})$$

$$W(e^{j\omega}) = \frac{1}{2\pi}\int_{-\pi}^{\pi} U(e^{j(\omega-\omega_{0})}) d\theta$$

$$V(e^{j\omega}) = \frac{1}{2}W(e^{j(\omega-\omega_{0})}) + \frac{1}{2}W(e^{j(\omega-\omega_{0})})$$

$$W(e^{j\omega}) = \frac{1}{2\pi}\int_{-\pi}^{\pi} U(e^{j(\omega-\omega_{0})}) d\theta$$

$$V(e^{j\omega}) = \frac{1}{2}W(e^{j(\omega-\omega_{0})}) + \frac{1}{2}W(e^{j(\omega-\omega_{0})})$$

$$U(e^{j\omega}) = \frac{1}{2}W(e^{j(\omega-\omega_{0})}) + \frac{1}{2}W(e^{j(\omega-\omega_{0})})$$

$$U(e^{j(\omega-\omega_{0})}) = \frac{1}{2}W(e^{j(\omega-\omega_{0})}) + \frac{1}{2}W(e^{j(\omega-\omega_{0})})$$

$$U(e^{j(\omega-\omega_{0})}) = \frac{1}{2}W(e^{j(\omega-\omega_{0})}) + \frac{1}{2}W(e^{j(\omega-\omega_{0})})$$

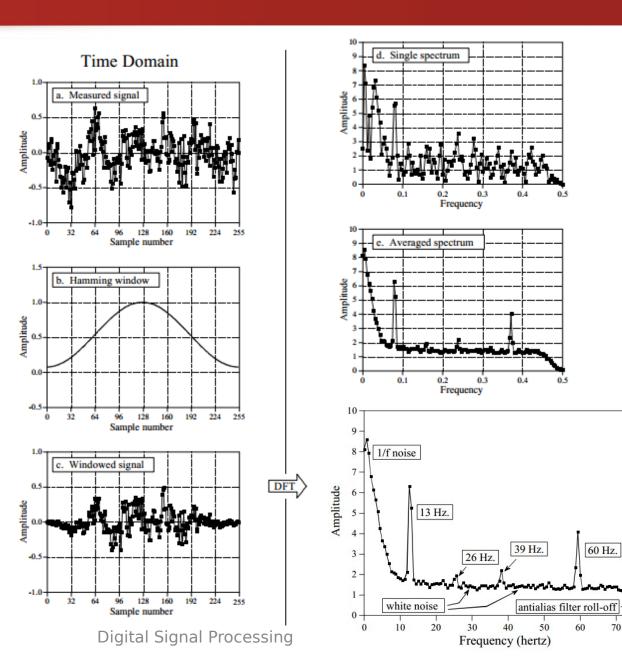
$$U(e^{j(\omega-\omega_{0})}) = \frac{1}{2}W(e^{j(\omega-\omega_{0})}) + \frac{1}{2}W(e^{j(\omega-\omega_{0})})$$

29

Improving Signal to Noise Ratio (SNR)

• Example

- (a) A signal (simulated) measured in the sea (160 smp/sec), noise, but could contain periodic signal (e.g., submarine propeller, 13 Hz and harmonics)
- (e) Average of 100 spectra obtained through steps from
 (a) to (d)



Course: 63744 [GDSP]