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Spatial filtering

* Multidimensional signals

* Spatial convolution

* Smoothing spatial filters

* Examples using smoothing spatial filters

* Smoothing spatial filters

* Spatial filtering of color images

* Sharpening spatial filters

* The first-order derivative for (non-linear) image sharpening - the gradient
* Example of exam task

* The second-order derivatives for image sharpeninig - the Laplacian
* How to avoid negative values of pixels?

* The second-order derivatives for image sharpeninig - the Laplacian

* Sharpening using smoothing filter

Course: 63744 Digital Signal Processing
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Multidimensional signals

* Images

- Grey-scale images; 2-D: f(x, y) depend on several variables such as spatial
coordinates (x, y)

£(0,0) fO.1) o fON - 1)
£(x, y) = f(15|0) fU;l) f(U\E’— 1)
| f(M - 1,0) f(M-1,1) - f(M—-1,N-1)]

Course: 63744 Digital Signal Processing °~
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Multidimensional signals

* Color images
- Three channels; red, green, blue; 3 X 2-D: {r(x, y), g(x, y), b(x,y)}

CR<X’y) r

(x,)

C(X:)’) = CG<X,y) = g<X,y)
ICB<X’y)I b(x,y)

I
]
(. ¥) el
(x.v)
Spatial mask —/ Spatizjl :nask
Gray-scaic image RGB color image .

Course: 63744
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Spatial convolution

* Convolution (convolution kernel, impulse response, spatial mask, template)

g(x,y) = w(s,t) X f(x,y)

- input
image

convolution - convolution

window

mask

lo

E

L MMM

le

ls| X MsMiMs

ls|  [MsM;Me

output
image

=

Course: 63744
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Smoothing spatial filters

* Smoothing (blurring)
- Rearranging intensities in image with the aim to smooth sharp peaks
- Filtering using linear low-pass filters, positive coefficients of the mask
- Smoothing using moving average (a box filter), smoothing using weighted moving average

1 1 1 1 2 1
1 1
_X _
9 1 1 1 16>< 2 4 2
1 1 1 1 2 1

2 Zw(s Of(x + s,y + 1)

§=—a t=—

g(x,}’) o a b

> > wis, 1)

Course: 63744 s=—a t=—b
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Smoothing spatial filters

* Results of smoothing with
moving average filters

(sizes of spatial masks,

M=3,5,9)
/ Original signal

Course: 63744 [Gonzales, Woods]
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Smoothing spatial filters

* Gaussian filter

0.2, mEI .
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Course: 63744 Digital Signal Processing
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Smoothing spatial filters

* Examples

Original Boxcar filter (width = 50) Gaussian filter (o = 10)

Course: 63744 Digital Signal Processing
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Examples using smoothing spatial filters

Course: 63744 Digital Signal Processing
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Examples using smoothing spatial filters

aussian Moise Average Filteredlmage
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Course: 63744 Digital Signal Processing
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Examples using smoothing spatial filters

Course: 63744 Digital Signal Processing
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Examples using smoothing spatial filters

Course: 63744 Digital Signal Processing
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Smoothing spatial filters

“input e ~ filter
image i window

13| 4 | 8
2 9
251 6

* Median filter

(0)]

; ordered
output pixels
image

Course: 63744 ' ;. e . 25
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Smoothing spatial filters

* Results of smoothing with square averaging filter (size of spatial mask, M =3) and with 3 X 3
median filter

Wik

. . . [Gonzales, Woods]
Course: 63744 Digital Signal Processing
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Spatial filtering of color images

* The same operation is performed in each channel
- Example, moving average filter

c(x,y) - an arbitrary vector in RGB color space

Sxy - the set of coordinates defining a neighborhood centered at (x, y) in an RGB color image
cr(x,y)| |r(x,y)
C(X’y) — CG(X,y) = g(X’y) I I
CB(X,y)I b<X,y) % Z r(x,y)
(x,y)esxy
_ 1 _ 1
C(X,_Y) — E C(X,J’) C<X,Y> — E Z g(X,y>
(X,)’)esxy (x,y)ESXy
1
E b(X,_)’)
(x,7)eS,,
| I
Course: 63744

Digital Signal Processing
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Spatial filtering of color images

* Moving average filter

Original Averaging

OpenCV|OpenCV

Course: 63744 Digital Signal Processing
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Spatial filtering of color images

* Example of using median filter

Driginf Median

Course: 63744 Digital Signal Processing
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Sharpening spatial filters

* Sharpening
- Rearranging intensities in image with the aim to rise differences in intensities of the
neighboring pixels to emphasize tiny details
- Filtering using high-pass filters, first- or second-order derivative

Course: 63744 Digital Signal Processing
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Sharpening spatial filters

* First- and second-order derivative

ﬂf

— flx + 1) — f(x) "’zf s A1) 4 = 1) — 2f()

s Intensity transition
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The first-order derivatives for (non-linear) image
sharpening - the gradient

* Empasizing contours

Prewitt operators

- For raws
1 0 -1
1 0 -1
1 0 -1
- For columns
-1 —1 -1
O 0 O
1 1 1

Course: 63744
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The first-order derivatives for (non-linear) image
sharpening - the gradient

* Roberts cross gradient operators, Sobel operators

1 0 0 -1
0 1 1 0
1 2 1 -1 0 1
0 0 0 -2 0 2
1 2 1 1 0 1

Course: 63744 Digital Signal Processing
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The first-order derivatives for (non-linear) image
sharpening - the gradient

* Magnitude of the gradient, Roberts cross gradient operators, Sobel operators

—of
G, | | ox —1 0 0 —1

e [G} | of
L9y | 0 1 1 0

Vf = mag(Vf)
=[G + G2]"”

af '\ af \* ['/2
- I:(a) + (3_},) ] 0 0 0 =) 0 2

+1G,]

Vf = |G,

Course: 63744 Digital Signal Processing



The first-order derivatives for (nonlinear) image
sharpening - the gradient

* Sobel gradient

Course: 63744 Digital Signal Processing [Gonzales, Woods]
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The first-order derivatives for (non-linear) iImage
sharpening - the gradient

* Emphasizing contours

Sobel operators

Course: 63744 Digital Signal Processing
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* Example of exam task

Consider the 48 X 48 gray-scale input image in Figure 1, with values coded from -1 for black to +1 for white, as shown. This image
contains three values: -1 in the darkest regions, 0 around the border, and 1 in the three light squares. Identify which of the output
images in Figure 2 (A, or B, or C, or D ?) results from applying the impulse response hi(n1, n2) of filter H1 in the sense of convolution

to the original input image, and which of the output images in Figure 2 (A, or B, or C, or D ?) results from applying the impulse response

h2(n1, n2) of filter H2 in the sense of convolution to the original input image. Justify both of your answers. The hi(n1, n2) and h2(n1, n2)
are defined as:

Flgurel o U _ & “ - - 1 g 1 L O T
3 25 25 25 25 25
0 =% 0 L & A& L L
6 - T 25 25 25 25 25 T
: _ 1 0 . . _ 1 1 1 1 1
hl[nl. 712] — 0 0 0 o hg[”-], n"]] = % 95 25 95 O o
0 L o = 1 1 1 1 1 o
n 0 %5 2 25 25 25
0 L o 101 1 1 1
- 3 - L. 25 25 25 25 25 4

n —»

(A) (B) (@)
Figure 2
Course
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The second-order derivatives for image sharpening -
the Laplacian

* Sharpening
- Rearranging intensities in image with the aim to rise differences in intensities of the neighboring
pixels to emphasize tiny details
- Filtering using high-pass filters, second order derivative, central coefficients positive and
neighboring coefficients negative (or vice versa), sum of the coefficients equals zero

(x axis) Intensity image profile
0 0 0
-1 2 -1 —»
0 0 0
N\
s

Course: 63744 Digital Signal Processing
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The second-order derivatives for image sharpening -
the Laplacian

* The Laplacian operator
(2D second-order derivative)

a?f a*f

-2

VL= dx2 EJyz

a°f | |

PN flx +1Ly)+ f(x—1,y) = 2f(x,y)

o*f

azyz

= flx,y + 1) + f(x,y — 1) = 2f(x,y)

Vif=[flx+1y)+ flx =1L y) + flx,y + 1) + f(x,y — 1)]
— 4f(x,y)

Course: 63744 Digital Signal Processing °~
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The second-order derivatives for image sharpening -
the Laplacian

* The Laplacian operator

0 1 0 1 1 1
/ 1 —4 1 1 —8 1

0 1 0 1 1 1

0 —1 0 —1 —1 1

N~ s —1 4 —1 —1 8 —1
0 —1 0 —1 —1 1

f(x,y) — V2f(x,y) if the center coefficient of the
Laplacian mask is negative

f(x,y) + V°f(x,y) if the center coefficient of the
Laplacian mask is positive.

Course: 63744 Digital Signal Processing °~
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The second-order derivatives for image sharpening -

the Laplacian

* Image sharpening using the Laplacian, original image, Laplacian without scaling, Laplacian with scaling
(rise, scale and truncate), sharpened image

Course

flx,y) — V2f(x,y)

S T pey) + Vr(x )

Digital Signal Processing

if the center coefficient of the
Laplacian mask is negative

if the center coefficient of the
Laplacian mask is positive.

[Gonzales, Woods] e
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How to avoid negative values of pixels?

* How to display images of which values of pixels are negative or above the value of 2 m_12
(n - number of bits, n = 8)

Rise and truncate
1. Add a constant of 2™/ 2 to the value of each pixel of an image:

Value = Value + 2™/ 2

2. Truncate the values of pixels of the image:
if (Vvalue <0) then Value = 0,

if (Vvalue > M _ 1) then Value =

Move and scale
1. Move the values of pixels of an image, i.e, create an image, fm, whose minimum value is O

fm = f - min(f)
2. Scale the values of pixels of the image fm to fit between 0 and 2 — 1
fs = K.[fm/max(fm)], K=2"—-1

Rise, scale and truncate
fs=(f+K)/2 K=2"-1

Course: 63744 Digital Signal Processing




The second-order derivatives for image sharpening -
the Laplacian

* Image of whole body bone scan, Laplacian of the image, sharpened image

[Gonzales, Woods]

Course: 63744 Digital Signal Processing
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The second-order derivatives for Image sharpening -
the Laplacian

* Example using Laplacian

Course: 63744 Digital Signal Processing
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The second-order derivatives for image sharpening - the
Laplacian
Flx,y) — V2f(x,y)

if the center coefficient of the

Laplacian mask is negative
g(x, y) = 2
Flx,y) + Vif(x, y)

if the center coefficient of the
Laplacian mask is positive.

T VY =[x+ Ly) + f(x = Ly) F f(xy + D)+ fay = 1)
— 4f(x,y)

g(x,y) = f(x,¥) — [f(x + 1,¥) + f(x — 1,y)
+ f(x.y + 1) + f(x,y — 1)] + 4f(x, y)
= 5f(x.y) — [f(x + 1.y) + f(x — 1, ¥)
+ f(x.y + 1) + f(x,y — 1)]

v Laplace ¢ Joint mask Joint mask with diagonals
0 1 0 0 —1 0 1 —1 =
1 —4 1 —1 5 —1 —1 9 —1
0 1 0 0 —1 0 —1 —1 —1
Cour:
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The second-order derivatives for image sharpening - the

Laplacian
0 -1 0 0 00O 0 -1 0
-1 5 —-1/=|1010* -1 4 -1
0 -1 0 00O 0 -1 0
-1-1 -1 0 0O -1-1-1
-1 9 -1y=]1010*+*|—-1 8 —1
-1-1 -1 00O -1-1-1
>

Course: 63744 [Gonzales, Woods]
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Sharpening using smoothing filter

1. Blur the original image f(x,y) I
Original signal
2. Subtract the blurred image fb(x,y)

from the original (= the mask) .
Unsh king:
fenarp masKing Blurred signal
fs(x,y) = f(xy) - fo(x.y) =7
3. Add the mask to the original:
g(x.y) = fixy) + fs(x.y) Unsharp mask

Highboost filtering (A > 1):
fhb(x’y) = A. fs(x,y) Sharpened signal D ! P“X E

3. Add the mask to the original:

g(x,y) = f(x,y) + fhb(x,y) Original image, result of blurring with a Gaussian filter, unsharp
mask, result of using unsharp masking, result of using highboost
filtering

Course: 63744 Digital Signal Processing [Gonzales, Woods] e\
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