
1
Course: 63744 Digital Signal Processing

Discrete-time signals and systems, II
● Discrete-time systems
● Representation of discrete-time systems
● Classification of discrete-time systems
● Discrete Linear Time-Invariant (LTI) systems
● Convolution
● Convolution, summary
● Convolution properties
● Examples of LTI systems
● Impulse response and stability
● (Additional materials)

2
Course: 63744 Digital Signal Processing

Discrete-time systems

● A discrete-time (DT) system is a device or algorithm that operates on a discrete-time signal, x(n),
 called the input or excitation, according to some well-defined rule, to produce another discrete-
 time signal, y(n), called the output or response of the system

 x(n) y(n) y(n) = T [x(n)]

● The input-output description of a discrete-time system consists of a mathematical expression or
 a rule, which explicitly defines the relation between the input and output signals (T – input-
 output relationship)

 → Difference equation (DE)
● Examples of discrete-time systems:

 - Delaying the input y(n) = x(n - 5)

 - Moving average filter y(n) = 1/3 [x(n + 1) + x(n) + x(n – 1)]

 - Squaring the input y(n) = x(n) x(n)

 - Minimum y(n) = min { x(n + 1), x(n), x(n – 1) }

 DT system (T)

3
Course: 63744 Digital Signal Processing

Representation of discrete-time systems

● Difference equation (DE) of a system, y(n) = T [x(n), x(n – 1), x(n – 2), ...]

 - Example

● Block diagram realization of the system

 - What is the output y(n), if the input is rectangular signal, x(n) = {1, 1}?

y (n) =
1
4
[x(n)+x(n−1)+x (n−2)+x (n−3)] =

1
4 ∑
k=n−3

n

x (k)

[Lyons]

x (n) = { 1 , 1 }

4
Course: 63744 Digital Signal Processing

● Example y (n) =
1
4
[x (n)+x (n−1)+x (n−2)+x (n−3)] =

1
4 ∑
k=n−3

n

x(k)

Representation of discrete-time systems

[Lyons]

x (n) = { 1 , 1 }

y (n) = { 1 / 4 , 1 /2 , 1 /2 , 1 /2 , 1 /4}

5
Course: 63744 Digital Signal Processing

Classification of discrete-time systems
● Linear versus nonlinear systems

 - Linear systems obey superposition, i.e., additivity and homogeneity (scaling)

 T[]x1(n) y1(n)

 T[]x2(n) y2(n)

 T[]
a1 x1(n) + a2 x2(n) a1 y1(n) + a2 y2(n)

6
Course: 63744 Digital Signal Processing

Classification of discrete-time systems
● Linear versus nonlinear systems

 - A system T

 is linear if and only if

 T [a1 x1(n) + a2 x2(n)] = a1 T [x1(n)] + a2 T [x2(n)]

 for all x1(n), x2(n), and all constants a1 and a2 (additivity and scaling)

 - How to determine if the system is linear?

 1. y1(n) = T [x1(n)]

 2. y2(n) = T [x2(n)]

 3. T [a1 x1(n) + a2 x2(n)] = a1 y1(n) + a2 y2(n)

 T[]x(n) y(n)

?

7
Course: 63744 Digital Signal Processing

Classification of discrete-time systems
● Linearity, example, accumulator → y (n)= ∑

l=−∞

n

x (l)

x (n)=a1 x1(n)+a2 x2(n)

y (n)= ∑
l=−∞

n

(a1 x1(l)+a2 x2(l))

y (n)= ∑
l=−∞

n

(a1 x1(l))+ ∑
l=−∞

n

(a2 x2(l))

y (n)=a1 ∑
l=−∞

n

x1(l)+a2 ∑
l=−∞

n

x2(l)

y (n) = a1 y1(n) + a2 y2(n)

y1(n)= ∑
l=−∞

n

x1(l)

y2(n)= ∑
l=−∞

n

x2(l)
Linear

T[x(n)]

→ Linear combination of inputs

y1(n)= ∑
l=−∞

n

x1(l)1.

3.

2. y2(n)= ∑
l=−∞

n

x2(l)

8
Course: 63744 Digital Signal Processing

● Time-invariant systems versus time-variant systems

 - Time shift of input causes the same shift at output

 y(n) = T [x(n)]

 y(n - n0) = T [x(n - n0)]

 T[]x(n) y(n)

Classification of discrete-time systems

0

n0 n0

0

9
Course: 63744 Digital Signal Processing

Classification of discrete-time systems

● Time-invariant systems versus time-variant systems

 - A system T is time-invariant (or shift-invariant) if and only if

 y(n) = T [x(n)]
 implies that

 y(n - n0) = T [x(n - n0)]

 for every input signal x(n) and every time shift n0)

 - How to determine if the system is time-invariant?

 1. y(n) = T [x(n)]

 2. y1(n, n0) = T [x(n - n0)] (delay the input, x(n))

 3. y(n – n0) = T [x(n – n0)] (delay the output, n)

 4. y1(n, n0) = y(n – n0)
?

10
Course: 63744 Digital Signal Processing

Classification of discrete-time systems

● Time-invariant, example, → (1.)

 Delay the input 2.

 Delay the output 3.

 4.

● Time-variant, example, → (1.)

 Delay the input 2.

 Delay the output 3.

 4.

y (n) = (x (n)) 2

y1(n , n0) = (x (n−n0))
2

y (n−n0) = (x (n−n0))
2

y1(n , n0) = y (n−n0)

y (n) = n . x (n)

y1(n , n0) = n . x (n−n0)

y (n−n0) = (n−n0) . x (n−n0)

y1(n , n0) ≠ y (n−n0)

11
Course: 63744 Digital Signal Processing

Classification of discrete-time systems

● Example of exam task

 - Is the following system linear? Is it time-invariant?

y (n)=x2
(n)−x (n−1). x (n+1)

12
Course: 63744 Digital Signal Processing

● Causal versus non-causal systems

 - A system is called causal if the output of the system at any time n depends only on present and
 past inputs, but does not depend on future inputs

 y(n) = T [x(n), x(n-1), x(n-2), ...]

● A causal system is physically realizable system (not for off-line processing)
● (A signal is called causal if and only if x(n) = 0 for n < 0)

 - Backward difference, y(n) = x(n) – x(n-1) → causal

 - Forward difference, y(n) = x(n+1) – x(n) → non-causal, looks forward
 in time

● Causality → consequence happens after the cause

Classification of discrete-time systems

13
Course: 63744 Digital Signal Processing

● Check for causality
● Moving average

 → causal, y(n) depends on x(n - k), k ≥ 0,

● Centered moving average (counter example)

 → non-causal, looks forward in time, can be made causal by delaying

y (n) =
1
M ∑

k=0

M−1

x (n−k)

y (n) =
1
M ∑

k=−(M−1)/2

(M−1)/2

x (n−k)

Classification of discrete-time systems

14
Course: 63744 Digital Signal Processing

● Stable versus unstable systems

 - A system is said to be Bounded Input Bounded Output (BIBO) stable if and only if every bounded
 input produces a bounded output

 - There exist some finite numbers Bx and By such that

∃B x ,B y : |x (n)|⩽ Bx< ∞ , |y (n)|⩽ B y< ∞

Classification of discrete-time systems

15
Course: 63744 Digital Signal Processing

Discrete Linear Time-Invariant (LTI) systems

● An important subset of discrete systems – discrete Linear Time-Invariant Systems (LTI)

 - Properties

 * Linearity (allows analysis using elementary signals)

 * Time-invariability (operating does not change over time)

 - Consequences

 * Mathematical tractability

 * Simple realization

 * → Convolution

16
Course: 63744 Digital Signal Processing

● Why convolution?

 So far, we were able to
 determine

 - the output, y(n), of
 an LTI system to the
 input signal, x(n),

 - if knowing
 * the difference equation
 * or, block diagram
 of the LTI system

Convolution

y (n) = 1
4
[x (n)+x (n−1)+x (n−2)+x(n−3)] =

1
4 ∑
k=n−3

n

x (k)

x(n) → T[] → y(n)

T[]x(n) y(n)

17
Course: 63744 Digital Signal Processing

● Why convolution?

 Using convolution, we
 can determine

 - the output, y(n),
 of an LTI system to the
 input signal, x(n),

 - if knowing
 * the response of
 the LTI system
 (denoted h(n)) to one
 particular input signal,
 the unit sample signal, δ(n)

Convolution

δ(n) - the unit sample h(n) - impulse response

x(n), h(n) → convolution → y(n)

T[]x(n) y(n)

T[]δ(n) h(n)

If x(n) = δ(n) then y(n) = h(n)

18
Course: 63744 Digital Signal Processing

● Impulse response

- Difference equation, y(n) = ?

x(n)

y(n)
A2

A3

z−1

z−1

A1

+

x(n) = δ(n) impulse - unit sample

y(n) = h(n) impulse response = ?

x(n)

- Output values, y(n) = ?

y(n) = h(n) = ?

Convolution

19
Course: 63744 Digital Signal Processing

● Impulse response

 y(n) = A1.x(n) + A2.x(n-1) + A3.x(n-2)

x(n)

y(n)
A2

A3

z−1

z−1

A1

+

x(n) = δ(n) impulse - unit sample

y(n) = h(n) impulse responseA1

A2

A3

x(n)

y(n)

h(n) = A1.δ(n) + A2.δ(n-1) + A3.δ(n-2)

y(n) = h(n) = {A1, A2, A3}

n = 0
→ LTI system is completely specified by h(n)

Convolution

20
Course: 63744 Digital Signal Processing

● Decomposition of discrete signal x(n)

 - Discrete signal x(n) can be expressed by a sum of unit samples

 where

 - Example, causal signal: x(n) = 0, n < 0

Convolution

x (n)= ∑
k=−∞

∞

x (k)δ(n−k)

x (n) = x (0)δ(n) + x (1)δ(n−1) + x(2)δ(n−2) + ...

δ (n−k)={1 , n=k0 , n≠k

21
Course: 63744 Digital Signal Processing

Convolution
● The decomposition of a
 triangular signal, x(n),
 into a sum of unit
 samples

x (n) = 1.δ(n) + 2.δ(n−1) + 3.δ(n−2) + 2.δ(n−3) + 1.δ(n−4)

x (n)

x (n) = {1, 2,3, 2, 1}

n = 0

x (n)= ∑
k=−∞

∞

x (k)δ(n−k)

x (n) = x(0)δ(n)+x (1)δ(n−1)+x (2)δ(n−2)+x (3)δ(n−3)+x (4)δ(n−4)

22
Course: 63744 Digital Signal Processing

● Response of an LTI system

 - Suppose that h(n) is impulse response to unit sample δ(n), δ(n) → T[] → h(n)

 - Since the system is

 time-invariant

 and linear

 - The output is as follows:

Convolution

T [δ (n)] = h(n) → T [δ(n−k)] = h(n−k)

y (n) = T [x (n)]

= T [∑
k=−∞

∞

x (k)δ(n−k)]

= ∑
k=−∞

∞

x (k)T [δ (n−k)]

y (n) = ∑
k=−∞

∞

x (k) h(n−k) = x (n)∗ h(n)

T [a.δ(n−k)+b .δ(n−l)] = a .h (n−k)+b .h (n−l)

Due to linearity

Due to definition of h(n) and time-invariance

Convolution sum

= ∑
k=−∞

∞

x (k)h (n−k)

23
Course: 63744 Digital Signal Processing

● Convolution sum from the
 superposition point of view

Convolution

Decomposition
of input signal

Composition of output
signals (responses)

Unit sample response, h(n)

x (n) = ∑
k=−∞

∞

xk (n) = ∑
k=−∞

∞

x (k)δ (n−k)

∑
k=−∞

∞

x (k)h(n−k) = ∑
k=−∞

∞

yk (n) = y (n)

x (n) y (n)

[Oppenheim, Schafer]

Demo: https://engineering.purdue.edu/VISE/ee438/demos/

https://engineering.purdue.edu/VISE/ee438/demos/

24
Course: 63744 Digital Signal Processing

● Convolution
 interpretation
 (the system is
 moving over the
 signal)

Convolution

Off-line analysis,
flipped h(n) is
moving over
the signal x(n)

● More useful
 computational
 interpretation
 (consider h(n-k) as
 reversing it in time at
 k = 0 and then delaying it
 by n samples) !

y (n) = ∑
k=−∞

∞

x (k)h (n−k)

[Oppenheim, Schafer]

25
Course: 63744 Digital Signal Processing

● Interpretation / implementation of convolution

 - Convolving a signal with an impulse response of an LTI system is equivalent to passing the signal
 through the system (summation is symmetric in x and h)

Convolution

y (n) = ∑
k=−∞

∞

x (k) h(n−k) = ∑
k=−∞

∞

h(k) x (n−k)

Input signal, x(n)

Flipped x(n) Impulse response, h(n)

Flipped impulse response, h(n)

Input signal, x(n)Input signal is passing
the system
(“Real-time” analysis)

The system is moving
over the signal
(“Off-line” analysis)

1.

1. 2.

2.

n

n n

*

*

Output signal, y(n)

Output signal, y(n)

Demo: https://engineering.purdue.edu/VISE/ee438/demos/

Demo: http://www.fourier-series.com/

https://engineering.purdue.edu/VISE/ee438/demos/
http://www.fourier-series.com/

26
Course: 63744 Digital Signal Processing

● Example
● A block diagram of an LTI system, y(n) = T [x(n), y(n - 1)]

● Difference equation: y(n) = 0.25 y(n – 1) + 0.5 x(n) + 0.5 x(n – 1)
● What is the length of impulse response?
● Convolution ?

Convolution

→ Convolution is applicable only for those LTI systems for which
 y(n) = T[x(n), x(n-1), …, x(n-M)]
 i.e., impulse response, h(n), is of finite duration

T

27
Course: 63744 Digital Signal Processing

● Example of exam task

 - An LTI system is defined by the following impulse response

 h(n) = 2 cos (n π / 2) . [u(n) - u(n - 3)]

 Determine the response of the system using convolution for the following input signal

 x(n) = n . [u(n) - u(n - 4)]

 Hint: Consider the difference of two unit step signals, u(.)

Convolution

28
Course: 63744 Digital Signal Processing

● The impulse response h(n) can determine the characteristics of an LTI system completely
● For any input x(n), the output y(n) is the convolution sum of x(n) and h(n)
● Convolution can be used to implement only those LTI systems for which the impulse response
 h(n) is of finite duration

Convolution, summary

 h(n)
x(n) y(n) = x(n) * h(n)

y (n) = ∑
k=−∞

∞

x (k) h(n−k) = x (n)∗ h(n) Convolution sum

h (n) = {≠0 , 0 ⩽ n < N
0 , elsewhere

29
Course: 63744 Digital Signal Processing

● Convolution properties define connections of LTI systems

 - Convolution is a commutative operation

 x(n) * h(n) = h(n) * x(n)

 - Convolution is an associative operation → Cascade connection

 [x(n) h∗ h 1(n)] h∗ h 2(n) = x(n) ∗ h [h1(n) h∗ h 2(n)]

 again commutativity and again associativity → Order of systems exchanged

 = x(n) ∗ h [h2(n) h∗ h 1(n)] = [x(n) h∗ h 2(n)] h∗ h 1(n)

Convolution properties

x(n)x(n)

x(n)

h(n)h(n) y(n)y(n)

y(n)

y(n)

y(n)

y(n)

x(n)

x(n)

x(n)h1(n) h2(n)

h2(n) h1(n)

h1(n) * h2(n)

h2(n) * h1(n)

30
Course: 63744 Digital Signal Processing

● Convolution properties define connections of LTI systems

 - Convolution is distributive over addition → Parallel connection

 x(n) * h1(n) + x(n) * h2(n) = x(n) * [h1(n) + h2(n)]

Convolution properties

x(n)

x(n)

 h(n) = h1(n) + h2(n)

 h1(n)

y(n) y(n)

x(n)

 h2(n)

+

31
Course: 63744 Digital Signal Processing

● Example of exam task

 - y1 = x1(n) – x1(n-1), y2 = x2(n) + x2(n-1); Derive h1(n), h2(n), and hc(n) for cascade and hp(n)
 for parallel connection. Check commutativity for h1(n) and h2(n)

● Example of exam task

 - Check the properties of output signal for cascade and parallel connection in the following case:
 Fs = 6000 smp/sec, h1 passes frequencies from 0 – 250 Hz, h2 passes from 1700 – 2400 Hz

Convolution properties

32
Course: 63744 Digital Signal Processing

Examples of LTI systems

● Example of finite impulse response LTI system, simple lowpass filter

● yL(n) = 1/2 x(n) + 1/2 x(n – 1)

 → * Moving average (first order),

 * Equalizes values of

 neighboring samples,

 * Lowpass filtering effect,

 * Keeps slowly varying trend

 of values of distant samples

 * Rejects rapid changes of

 values of neighboring samples

 → Smoothing effect

 hL(n) = 1/2 δ(n) + 1/2 δ(n - 1)

 hL(n) = {1/2, 1/2}

hL(n)

33
Course: 63744 Digital Signal Processing

• Example of finite impulse response LTI system, simple lowpass filter
● Repetitive use of simple (first-order) moving average lowpass filter, hL(n), will increase the
 smoothing effect

 Since convolution is an associative operation

 [x(n) h∗ h L(n)] h∗ h L(n) = x(n) ∗ h [hL(n) h∗ h L(n)]

 follows that the impulse response of the (second-order) moving average filter, hL2(n), which will
 increase the lowpass filtering effect, could be obtained by convolving hH(n) by itself

 hL2(n) = hL(n) * hL(n) = {1/2, 1/2} * {1/2, 1/2} = {1/4, 1/2, 1/4}

 Verify the lowpass filtering effect of hL2(n) at

 → hL2(n) - principal impulse response for smoothing spatial filters (image smoothing)

y(n)y(n)x(n) x(n) hL(n) hL(n) hL(n) * hL(n)

 http://www.fourier-series.com/

Examples of LTI systems

http://www.fourier-series.com/

34
Course: 63744 Digital Signal Processing

• Example of finite impulse response LTI system, simple highpass filter

● yH(n) = 1/2 x(n) – 1/2 x(n – 1)

 → * Differentiator (first order),

 * Preserves differences of values

 of neighboring samples,

 * Highpass filtering effect,

 * Keeps rapid changes of values

 of neighboring samples

 * Rejects slowly varying trend

 of values of distant samples

 → Sharpening effect

 hH(n) = 1/2 δ(n) – 1/2 δ(n - 1)

 hH(n) = {1/2, - 1/2}

hH (n)

Examples of LTI systems

35
Course: 63744 Digital Signal Processing

• Example of finite impulse response LTI system, simple highpass filter
● Repetitive use of simple first-order differentiator highpass filter, hH(n), will increase the
 sharpening effect

 Since convolution is an associative operation

 [x(n) h∗ h H(n)] h∗ h H(n) = x(n) ∗ h [hH(n) h∗ h H(n)]

 follows that the impulse response of the second-order differentiator filter, hH2(n), which will increase
 the highpass filtering effect, could be obtained by convolving hH(n) by itself

 hH2(n) = hH(n) * hH(n) = {1/2, - 1/2} * {1/2, - 1/2} = {1/4, - 1/2, 1/4}

 Verify the highpass filtering effect of hH2(n) at

 → hH2(n) - principal impulse response for sharpening spatial filters (image sharpening)

y(n)y(n)x(n) x(n) hH(n) hH(n) hH(n) * hH(n)

 http://www.fourier-series.com/

Examples of LTI systems

http://www.fourier-series.com/

36
Course: 63744 Digital Signal Processing

Examples of LTI systems

● Further study, laboratory

 1) Using the impulse response, hL(n) = {1/2, 1/2}

 of simple moving average lowpass filter, yL(n) = 1/2 x(n) + 1/2 x(n – 1),

 derive the impulse response of the fourth order, i.e.,

 hL4(n) = hL(n) * hL(n) * hL(n) * hL(n)

 Verify lowpass filtering effect of the filter hL4(n) at

 2) Using the impulse response, hH(n) = {1/2, - 1/2}

 of simple differentiator highpass filter, yH(n) = 1/2 x(n) - 1/2 x(n – 1),

 derive the impulse response of the fourth order, i.e.,

 hH4(n) = hH(n) * hH(n) * hH(n) * hH(n)

 Verify highpass filtering effect of the filter hH4(n) at

 http://www.fourier-series.com/

 http://www.fourier-series.com/

http://www.fourier-series.com/
http://www.fourier-series.com/

37
Course: 63744 Digital Signal Processing

Impulse response and stability
● An LTI system is said to be Bounded Input Bounded Output (BIBO) stable if and only if every
 bounded input produces a bounded output

● An LTI system is stable, , if and only if

● The system can give meaningful output only if it is stable

∃B x ,B y : |x (n)|⩽B x<∞ , |y (n)|⩽B y<∞

∑
k=−∞

∞

|h(k)| < ∞

y (n) = ∑
k=−∞

∞

h(k)x (n−k)

| y (n)| = | ∑
k=−∞

∞

h(k)x (n−k)|
| y (n)| ≤ ∑

k=−∞

∞

|h(k)||x (n−k)|

| y (n)| ≤ B x ∑
k=−∞

∞

|h(k)| ≤ B y

B y < ∞

38
Course: 63744 Digital Signal Processing

(Additional materials)

● Implementation of convolution
● Convolution, matrix interpretation
● Convolution, example
● Convolution, example
● Convolution in MATLAB
● Convolution and causality

39
Course: 63744 Digital Signal Processing

Implementation of convolution

● Convolution sum for LTI systems

y (n) = ∑
k=−∞

∞

x (k) h(n−k) = x (n)∗ h(n)

x (n)∗ h (n) = ∑
l=−∞

∞

x (n−l) h(l)

i.e. l = n−k →

● Summation is symmetric in x and h

= ∑
l=−∞

∞

h (l) x (n−l) = h (n)∗ x(n)

y (n) = ∑
k=−∞

∞

h (k) x (n−k) = h (n)∗ x(n)

Demo: https://engineering.purdue.edu/VISE/ee438/demos/

https://engineering.purdue.edu/VISE/ee438/demos/

40
Course: 63744 Digital Signal Processing

● Convolution interpretation 2, matrix interpretation

Convolution, matrix interpretation

[
y (0)

y (1)

y (2)

...
] = [

x (0)

x (1)

x (2)

...

x (−1)

x (0)

x (1)

...

x (−2)

x (−1)

x (0)

...
] [
h (0)

h(1)

h(2)]

y (n) = ∑
k=−∞

∞

h(k) x (n−k) = ∑
k=−∞

∞

x (n−k)h (k)

Diagonals in X matrix are equal

41
Course: 63744 Digital Signal Processing

● Convolution example, inverting attenuator and discrete derivative

Convolution, example

[GDSP]
Demo: http://www.fourier-series.com/

y (n) = ∑
k=−∞

∞

x (k)h(n−k) = x (n)∗ h(n)

http://www.fourier-series.com/

42
Course: 63744 Digital Signal Processing

Convolution, example
● Example

 Derive (analytically) convolution for the following example

 - Rectangular pulse of duration N

 is passed to the first-order low-pass filter of which impulse response is

 Solution: For n < 0 y[n] = 0

 For n ≤ 0 ≤ N - 1

 For n ≥ N

43
Course: 63744 Digital Signal Processing

Convolution, example
● Example

44
Course: 63744 Digital Signal Processing

● Convolution in MATLAB

 - The function conv() implements the convolution sum of two finite-length sequences

● If x = [0 4 1 -2 5]

 h = [1 2 3 1]

 then conv(x, h) yields

 [0 4 9 12 8 5 13 5]

Convolution in MATLAB

45
Course: 63744 Digital Signal Processing

● An LTI system is causal if and only if h(n) = 0 for n < 0

 - Convolution

 - Causal LTI system (h(n) causal) and causal input signal x(n)

Convolution and causality

y (n) = ∑
k=−∞

∞

x (k) h(n−k) = ∑
k=−∞

∞

h(k) x (n−k)

y (n) = ∑
k=0

n

x (k) h(n−k) = ∑
k=0

n

h(k) x (n−k)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

