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Course: 63744 Digital Signal Processing

Discrete-time signals and systems, II
● Discrete-time systems
● Representation of discrete-time systems
● Classification of discrete-time systems
● Discrete Linear Time-Invariant (LTI) systems
● Convolution
● Convolution, summary
● Convolution properties
● Examples of LTI systems
● Impulse response and stability
● (Additional materials)
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Discrete-time systems

● A discrete-time (DT) system is a device or algorithm that operates on a discrete-time signal, x(n),  
  called the input or excitation, according to some well-defined rule, to produce another discrete-   
  time signal, y(n), called the output or response of the system

                    x(n)                                                                                         y(n)         y(n) = T [ x(n) ]

● The input-output description of a discrete-time system consists of a mathematical expression or   
   a rule, which explicitly defines the relation between the input and output signals ( T – input-         
   output relationship ) 

 → Difference equation (DE)
● Examples of discrete-time systems:

  -  Delaying the input          y(n)  =  x(n - 5)

  -  Moving average filter     y(n)  =  1/3 [ x(n + 1) + x(n) + x(n – 1) ]

  -  Squaring the input         y(n)  =   x(n) x(n)

  -  Minimum                         y(n)  =  min { x(n + 1), x(n), x(n – 1) }

    DT system  (T)
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Representation of discrete-time systems

● Difference equation (DE) of a system,    y(n) =  T [ x(n), x(n – 1), x(n – 2), ... ]

 - Example

● Block diagram realization of the system

  - What is the output y(n), if the input is rectangular signal, x(n) = {1, 1}?

y (n) =
1
4
[ x(n)+x(n−1)+x (n−2)+x (n−3)] =

1
4 ∑
k=n−3

n

x (k)

[Lyons]

x (n) = { 1 , 1 }
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● Example  y (n) =
1
4
[ x (n)+x (n−1)+x (n−2)+x (n−3)] =

1
4 ∑
k=n−3

n

x(k )

Representation of discrete-time systems

[Lyons]

x (n) = { 1 , 1 }

y (n) = { 1 / 4 , 1 /2 , 1 /2 , 1 /2 , 1 /4}
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Classification of discrete-time systems
● Linear versus nonlinear systems

 - Linear systems obey superposition, i.e., additivity and homogeneity (scaling)

   

         T[ ]x1(n) y1(n)

         T[ ]x2(n) y2(n)

         T[ ]
a1 x1(n) + a2 x2(n) a1 y1(n) + a2 y2(n)
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Classification of discrete-time systems
● Linear versus nonlinear systems

 - A system T 

   is linear if and only if 

  T [ a1 x1(n) + a2 x2(n) ]  =  a1 T [ x1(n) ] + a2 T [ x2(n) ]

   for all x1(n), x2(n), and all constants  a1  and  a2  (additivity and scaling)

 - How to determine if the system is linear?

      1.     y1(n) = T [ x1(n) ]

      2.     y2(n) = T [ x2(n) ]

      3.     T [ a1 x1(n)  +  a2 x2(n) ]   =   a1 y1(n)  +  a2 y2(n)

             T[ ]x(n) y(n)

?
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Classification of discrete-time systems
● Linearity, example, accumulator → y (n)= ∑

l=−∞

n

x (l)

x (n)=a1 x1(n)+a2 x2(n)

y (n)= ∑
l=−∞

n

(a1 x1(l)+a2 x2(l))

y (n)= ∑
l=−∞

n

(a1 x1(l))+ ∑
l=−∞

n

(a2 x2(l))

y (n)=a1 ∑
l=−∞

n

x1(l)+a2 ∑
l=−∞

n

x2(l)

y (n) = a1 y1(n) + a2 y2(n)

y1(n)= ∑
l=−∞

n

x1(l)

y2(n)= ∑
l=−∞

n

x2(l)
Linear

T[x(n)]

→ Linear combination of inputs

y1(n)= ∑
l=−∞

n

x1(l)1.

3.

2. y2(n)= ∑
l=−∞

n

x2(l)
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● Time-invariant systems versus time-variant systems

 - Time shift of input causes the same shift at output

                                           y(n) = T [ x(n) ]

                                            y(n - n0) = T [ x(n - n0) ]

              T[ ]x(n) y(n)

Classification of discrete-time systems

0

n0 n0

0
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Classification of discrete-time systems

● Time-invariant systems versus time-variant systems

 - A system T is time-invariant (or shift-invariant) if and only if 

                                y(n)  =  T [ x(n) ]
   implies that

                         y(n - n0)  =  T [ x(n - n0) ]   

   for every input signal  x(n)  and every time shift  n0)

 - How to determine if the system is time-invariant?

      1.     y(n) = T [ x(n) ]

      2.     y1(n, n0) = T [ x(n - n0) ]     (delay the input, x(n))

      3.     y(n – n0) = T [ x(n – n0) ]    (delay the output, n)

      4.     y1(n, n0)  =  y(n – n0)
?
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Classification of discrete-time systems

● Time-invariant, example,  →   (1.)

 Delay the input             2.

 Delay the output          3.

                                         4.       

● Time-variant, example,     →     (1.)

 Delay the input             2.

 Delay the output          3.

                                         4.

y (n) = (x (n)) 2

y1(n , n0) = (x (n−n0))
2

y (n−n0) = (x (n−n0))
2

y1(n , n0) = y (n−n0)

y (n) = n . x (n)

y1(n , n0) = n . x (n−n0)

y (n−n0) = (n−n0) . x (n−n0)

y1(n , n0) ≠ y (n−n0)
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Classification of discrete-time systems

● Example of exam task

  - Is the following system linear? Is it time-invariant?

y (n)=x2
(n)−x (n−1). x (n+1)
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● Causal versus non-causal systems

 - A system is called causal if the output of the system at any time  n  depends only on present and      
     past inputs, but does not depend on future inputs

                       y(n)  =  T [ x(n), x(n-1), x(n-2), ... ]

● A causal system is physically realizable system (not for off-line processing)
● (A signal is called causal if and only if   x(n)  =  0   for  n < 0)

 - Backward difference,     y(n) = x(n) – x(n-1)     →  causal

 - Forward difference,        y(n) = x(n+1) – x(n)    →  non-causal, looks forward                                             
                                                                                            in time

● Causality  →  consequence happens after the cause

Classification of discrete-time systems
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● Check for causality
● Moving average

                                                      

   →  causal,   y(n)  depends on  x(n - k),  k  ≥  0, 

● Centered moving average (counter example)                                   

   → non-causal, looks forward in time, can be made causal by delaying

y (n) =
1
M ∑

k=0

M−1

x (n−k )

y (n) =
1
M ∑

k=−(M−1)/2

(M−1)/2

x (n−k )

Classification of discrete-time systems
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● Stable versus unstable systems

 - A system is said to be Bounded Input Bounded Output (BIBO) stable if and only if every bounded     
     input produces a bounded output

 - There exist some finite numbers  Bx  and  By  such that

∃B x ,B y : |x (n)|⩽ Bx< ∞ , |y (n)|⩽ B y< ∞

Classification of discrete-time systems



15
Course: 63744 Digital Signal Processing

Discrete Linear Time-Invariant (LTI) systems

● An important subset of discrete systems – discrete Linear Time-Invariant Systems (LTI) 

 - Properties

   * Linearity (allows analysis using elementary signals)

   * Time-invariability (operating does not change over time)

 - Consequences

   * Mathematical tractability

   * Simple realization

   * → Convolution
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● Why convolution?

 So far, we were able to                  
   determine              

 - the output, y(n),                  of      
     an LTI system to the                     
     input signal, x(n),

 - if knowing                                      
     * the difference equation           
     * or, block diagram                       
        of the LTI system

Convolution

y (n) = 1
4
[ x (n)+x (n−1)+x (n−2)+x(n−3)] =

1
4 ∑
k=n−3

n

x (k)

x(n)  →  T[ ]  →  y(n)

T[ ]x(n) y(n)
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● Why convolution?

 Using convolution, we                    
   can determine 

 - the output, y(n),                           
     of an LTI system to the                 
    input signal, x(n),

 - if knowing                                      
     * the response of                          
       the LTI system                             
       (denoted h(n)) to one                
       particular input signal,              
       the unit sample signal, δ(n) 

Convolution       

δ(n) - the unit sample h(n) - impulse response

x(n), h(n)  →  convolution  →  y(n)

T[ ]x(n) y(n)

T[ ]δ(n) h(n)

If   x(n) = δ(n)    then   y(n)  =  h(n)
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● Impulse response

- Difference equation,  y(n) =  ?

x(n)

y(n)
A2

A3

z−1

z−1

A1

+

x(n)  =  δ(n)   impulse - unit sample

y(n)  =  h(n)   impulse response  = ?

x(n)

- Output values, y(n)  =  ?

y(n)  =  h(n)  =  ?

Convolution
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● Impulse response

  y(n) = A1.x(n) + A2.x(n-1) + A3.x(n-2)

x(n)

y(n)
A2

A3

z−1

z−1

A1

+

x(n)  =  δ(n)   impulse - unit sample

y(n)  =  h(n)   impulse responseA1

A2

A3

x(n)

y(n)

h(n)  = A1.δ(n) + A2.δ(n-1) + A3.δ(n-2) 

y(n)  =  h(n)  = {A1, A2, A3}

n = 0
→ LTI system is completely specified by h(n)

Convolution
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● Decomposition of discrete signal  x(n) 

 - Discrete signal  x(n)  can be expressed by a sum of unit samples

   where

 - Example,  causal signal:  x(n)  =  0,   n < 0

Convolution

x (n)= ∑
k=−∞

∞

x (k )δ(n−k )

x (n) = x (0)δ(n) + x (1)δ(n−1) + x(2)δ(n−2) + ...

δ (n−k )={1 , n=k0 , n≠k
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Convolution
● The decomposition of a    
   triangular signal,  x(n),      
   into a sum of unit              
   samples 

x (n) = 1.δ(n) + 2.δ(n−1) + 3.δ(n−2) + 2.δ(n−3) + 1.δ(n−4)

x (n)

x (n) = {1, 2,3, 2, 1}

n = 0

x (n)= ∑
k=−∞

∞

x (k)δ(n−k )

x (n) = x(0)δ(n)+x (1)δ(n−1)+x (2)δ(n−2)+x (3)δ(n−3)+x (4)δ(n−4)
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● Response of an LTI system

 - Suppose that h(n) is impulse response to unit sample δ(n),   δ(n)  →  T[ ]  →  h(n)

 - Since the system is  

   time-invariant 

   and linear

 - The output is as follows:

Convolution

T [δ (n)] = h(n) → T [δ(n−k )] = h(n−k )

y (n) = T [x (n)]

= T [ ∑
k=−∞

∞

x (k)δ(n−k )]

= ∑
k=−∞

∞

x (k )T [δ (n−k )]

y (n) = ∑
k=−∞

∞

x (k ) h(n−k ) = x (n)∗ h(n)

T [a.δ(n−k )+b .δ(n−l)] = a .h (n−k )+b .h (n−l)

Due to linearity

Due to definition of h(n) and time-invariance

Convolution sum

= ∑
k=−∞

∞

x (k )h (n−k )



23
Course: 63744 Digital Signal Processing

● Convolution sum from the        
   superposition point of view

Convolution

Decomposition
of input signal

Composition of output
signals (responses)

Unit sample response, h(n)

x (n) = ∑
k=−∞

∞

xk (n) = ∑
k=−∞

∞

x (k )δ (n−k )

∑
k=−∞

∞

x (k )h(n−k ) = ∑
k=−∞

∞

yk (n) = y (n)

x (n) y (n)

[Oppenheim, Schafer]

Demo: https://engineering.purdue.edu/VISE/ee438/demos/

https://engineering.purdue.edu/VISE/ee438/demos/
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● Convolution                      
   interpretation                  
  (the system is                    
   moving over the              
   signal)

Convolution

Off-line analysis,
flipped  h(n)  is
moving over
the signal  x(n)

● More useful                          
   computational                     
   interpretation                      
   (consider h(n-k) as              
   reversing it in time at         
   k = 0 and then delaying it  
   by n samples) !

y (n) = ∑
k=−∞

∞

x (k )h (n−k )

[Oppenheim, Schafer]
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● Interpretation / implementation of convolution

 - Convolving a signal with an impulse response of an LTI system is equivalent to passing the signal        
      through the system (summation is symmetric in x and h)

Convolution

y (n) = ∑
k=−∞

∞

x (k ) h(n−k ) = ∑
k=−∞

∞

h(k ) x (n−k )

Input signal, x(n)

Flipped x(n) Impulse response, h(n)

Flipped impulse response, h(n)

Input signal, x(n)Input signal is passing
the system
(“Real-time” analysis)

The system is moving
over the signal
(“Off-line” analysis)

1.

1. 2.

2.

n

n n

*

*

Output signal, y(n)

Output signal, y(n)

Demo: https://engineering.purdue.edu/VISE/ee438/demos/   

Demo:  http://www.fourier-series.com/

https://engineering.purdue.edu/VISE/ee438/demos/
http://www.fourier-series.com/
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● Example
● A block diagram of an LTI system,  y(n)  =  T [ x(n), y(n - 1) ]

● Difference equation:    y(n)  =  0.25 y(n – 1) + 0.5 x(n) + 0.5 x(n – 1)
● What is the length of impulse response?
● Convolution ?

Convolution

→ Convolution is applicable only for those LTI systems for which      
    y(n) = T[x(n), x(n-1), …, x(n-M)]
    i.e., impulse response, h(n), is of finite duration

T
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● Example of exam task

 - An LTI system is defined by the following impulse response

  h(n)  =  2 cos (n π / 2) . [ u(n)  -  u(n - 3) ]

  Determine the response of the system using convolution for the following input signal

  x(n)  =  n . [ u(n)  -  u(n - 4) ]

  Hint: Consider the difference of two unit step signals, u(.)

Convolution
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● The impulse response  h(n)  can determine the characteristics of an LTI system completely
● For any input  x(n),  the output  y(n)  is the convolution sum of  x(n)  and  h(n)
● Convolution can be used to implement only those LTI systems for which the impulse response             
   h(n)  is of finite duration

Convolution, summary

   h(n)
x(n) y(n) = x(n) * h(n)

y (n) = ∑
k=−∞

∞

x (k ) h(n−k ) = x (n)∗ h(n) Convolution sum

h (n) = {≠0 , 0 ⩽ n < N
0 , elsewhere



29
Course: 63744 Digital Signal Processing

● Convolution properties define connections of LTI systems

 - Convolution is a commutative operation

                                           x(n) * h(n)  =  h(n) * x(n)

 - Convolution is an associative operation  →  Cascade connection

                       [ x(n)  h∗ h 1(n) ]  h∗ h 2(n)  =  x(n)  ∗ h [ h1(n)  h∗ h 2(n) ]

   again commutativity and again associativity  →  Order of systems exchanged

                       =  x(n)  ∗ h [ h2(n)  h∗ h 1(n) ]  =  [ x(n)   h∗ h 2(n) ]  h∗ h 1(n)

Convolution properties

x(n)x(n)

x(n)

h(n)h(n) y(n)y(n)

y(n)

y(n)

y(n)

y(n)

x(n)

x(n)

x(n)h1(n) h2(n)

h2(n) h1(n)

h1(n) * h2(n)

h2(n) * h1(n)
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● Convolution properties define connections of LTI systems

 - Convolution is distributive over addition  →  Parallel connection

                 x(n) * h1(n)  +  x(n) * h2(n)   =   x(n) * [ h1(n) + h2(n) ]

Convolution properties

x(n)

x(n)

     h(n) = h1(n) + h2(n)

 h1(n)

y(n) y(n)

x(n)

 h2(n)

+
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● Example of exam task

 -  y1 = x1(n) – x1(n-1),  y2 = x2(n) + x2(n-1);  Derive  h1(n),  h2(n), and  hc(n) for cascade and  hp(n)      
      for parallel connection. Check commutativity for  h1(n)  and  h2(n)

● Example of exam task

 -  Check the properties of output signal for cascade and parallel connection in the following case: 
      Fs  =  6000 smp/sec,  h1 passes frequencies from 0 – 250 Hz,  h2 passes from 1700 – 2400 Hz

Convolution properties
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Examples of LTI systems

● Example of finite impulse response LTI system, simple lowpass filter
 

●   yL(n)  =  1/2 x(n) + 1/2 x(n – 1)

   →  * Moving average (first order),

         * Equalizes values of 

            neighboring samples,

         * Lowpass filtering effect,

         * Keeps slowly varying trend

            of values of distant samples

         * Rejects rapid changes of

            values of neighboring samples

                                                                            →  Smoothing effect

   hL(n)  =   1/2 δ(n) + 1/2 δ(n - 1)      

   hL(n)  =  {1/2, 1/2}

hL(n)
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• Example of finite impulse response LTI system, simple lowpass filter
● Repetitive use of simple (first-order) moving average lowpass filter,  hL(n), will increase the          
   smoothing effect

  Since convolution is an associative operation

                      [ x(n)  h∗ h L(n) ]  h∗ h L(n)  =  x(n)  ∗ h [ hL(n)  h∗ h L(n) ]

 

   follows that the impulse response of the (second-order) moving average filter, hL2(n),  which will         
     increase the lowpass filtering effect, could be obtained by convolving  hH(n) by itself 

         hL2(n) = hL(n) * hL(n) = {1/2, 1/2} * {1/2, 1/2} = {1/4, 1/2, 1/4} 

   Verify the lowpass filtering effect of  hL2(n)  at   
  

   → hL2(n) - principal impulse response for smoothing spatial filters (image smoothing)

y(n)y(n)x(n) x(n) hL(n)  hL(n)   hL(n) * hL(n)

 http://www.fourier-series.com/

Examples of LTI systems

http://www.fourier-series.com/
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• Example of finite impulse response LTI system, simple highpass filter
 

●   yH(n)  =  1/2 x(n) – 1/2 x(n – 1)

   →  * Differentiator (first order),

         * Preserves differences of values 

            of neighboring samples,

         * Highpass filtering effect,

         * Keeps rapid changes of values

            of neighboring samples

         * Rejects slowly varying trend 

            of values of distant samples

                                                                                                          →  Sharpening effect

   hH(n)  =  1/2 δ(n) – 1/2 δ(n - 1)      

   hH(n)  =  {1/2, - 1/2}

hH (n)

Examples of LTI systems
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• Example of finite impulse response LTI system, simple highpass filter
● Repetitive use of simple first-order differentiator highpass filter,  hH(n),  will increase the                    
   sharpening effect

  Since convolution is an associative operation

                      [ x(n)  h∗ h H(n) ]  h∗ h H(n)  =  x(n)  ∗ h [ hH(n)  h∗ h H(n) ]

 

   follows that the impulse response of the second-order differentiator filter, hH2(n),  which will increase    
     the highpass filtering effect, could be obtained by convolving  hH(n) by itself 

         hH2(n) = hH(n) * hH(n) = {1/2, - 1/2} * {1/2, - 1/2} = {1/4, - 1/2, 1/4} 

   Verify the highpass filtering effect of  hH2(n)  at   
  

   → hH2(n)  -  principal impulse response for sharpening spatial filters (image sharpening)

y(n)y(n)x(n) x(n) hH(n)  hH(n)   hH(n) * hH(n)

 http://www.fourier-series.com/

Examples of LTI systems

http://www.fourier-series.com/


36
Course: 63744 Digital Signal Processing

Examples of LTI systems

● Further study, laboratory 

  1) Using the impulse response,  hL(n) = {1/2, 1/2} 

      of simple moving average lowpass filter,  yL(n) = 1/2 x(n) + 1/2 x(n – 1),

      derive the impulse response of the fourth order, i.e.,

                               hL4(n) = hL(n) * hL(n) * hL(n) * hL(n)

   Verify lowpass filtering effect of the filter hL4(n) at  

  

  2) Using the impulse response,  hH(n) = {1/2, - 1/2} 

      of simple differentiator highpass filter,  yH(n) = 1/2 x(n) - 1/2 x(n – 1),

      derive the impulse response of the fourth order, i.e.,

                               hH4(n) = hH(n) * hH(n) * hH(n) * hH(n)

  Verify highpass filtering effect of the filter hH4(n) at  

  

 http://www.fourier-series.com/

 http://www.fourier-series.com/

http://www.fourier-series.com/
http://www.fourier-series.com/
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Impulse response and stability
● An LTI system is said to be Bounded Input Bounded Output (BIBO) stable if and only if every                 
   bounded input produces a bounded output

● An LTI system is stable,               , if and only if

● The system can give meaningful output only if it is stable

∃B x ,B y : |x (n)|⩽B x<∞ , |y (n)|⩽B y<∞

∑
k=−∞

∞

|h(k)| < ∞

y (n) = ∑
k=−∞

∞

h(k )x (n−k )

| y (n)| = | ∑
k=−∞

∞

h(k )x (n−k )|
| y (n)| ≤ ∑

k=−∞

∞

|h(k )||x (n−k )|

| y (n)| ≤ B x ∑
k=−∞

∞

|h(k )| ≤ B y

B y < ∞
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(Additional materials)

● Implementation of convolution
● Convolution, matrix interpretation
● Convolution, example
● Convolution, example
● Convolution in MATLAB
● Convolution and causality
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Implementation of convolution

● Convolution sum for LTI systems

y (n) = ∑
k=−∞

∞

x (k ) h(n−k ) = x (n)∗ h(n)

x (n)∗ h (n) = ∑
l=−∞

∞

x (n−l) h(l)

i.e. l = n−k →

● Summation is symmetric in  x  and  h

= ∑
l=−∞

∞

h (l) x (n−l) = h (n)∗ x(n)

y (n) = ∑
k=−∞

∞

h (k ) x (n−k ) = h (n)∗ x(n)

Demo: https://engineering.purdue.edu/VISE/ee438/demos/   

https://engineering.purdue.edu/VISE/ee438/demos/
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● Convolution interpretation 2, matrix interpretation

Convolution, matrix interpretation

[
y (0)

y (1)

y (2)

...
] = [

x (0)

x (1)

x (2)

...

x (−1)

x (0)

x (1)

...

x (−2)

x (−1)

x (0)

...
] [
h (0)

h(1)

h(2) ]

y (n) = ∑
k=−∞

∞

h(k ) x (n−k ) = ∑
k=−∞

∞

x (n−k )h (k)

Diagonals in  X matrix are equal



41
Course: 63744 Digital Signal Processing

● Convolution example, inverting attenuator and discrete derivative

Convolution, example

[GDSP]
Demo:  http://www.fourier-series.com/

y (n) = ∑
k=−∞

∞

x (k )h(n−k ) = x (n)∗ h(n)

http://www.fourier-series.com/
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Convolution, example
● Example

 Derive (analytically) convolution for the following example

 - Rectangular pulse of duration N 

   is passed to the first-order low-pass filter of which impulse response is

  Solution: For  n < 0                      y[n] = 0

                 For  n ≤ 0 ≤ N - 1  

                 For   n ≥ N                      
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Convolution, example
● Example
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● Convolution in MATLAB

 - The  function  conv()  implements the convolution sum of two finite-length sequences

● If        x  =  [ 0 4 1 -2 5 ]

           h  =  [ 1 2 3 1 ]

 then   conv(x, h)   yields

           [ 0 4 9 12 8 5 13 5 ]

Convolution in MATLAB
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● An LTI system is causal if and only if     h(n)  =  0     for  n < 0

 - Convolution

 

 - Causal LTI system (h(n)  causal) and causal input signal  x(n)

Convolution and causality

y (n) = ∑
k=−∞

∞

x (k) h(n−k ) = ∑
k=−∞

∞

h(k ) x (n−k)

y (n) = ∑
k=0

n

x (k ) h(n−k ) = ∑
k=0

n

h(k ) x (n−k )
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