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Course: 63744 Digital Signal Processing

Implementation of discrete-time 
systems

● Block diagram representations of LTI discrete systems
● Direct form realizations of LTI discrete systems
● Basic structures for IIR systems: cascade form
● Basic structures for IIR systems: parallel form
● Comparison of structures
● Transposing
● Second order modules for discrete-time systems
● Basic structures of FIR systems: direct forms
● Basic structures of FIR systems: cascade form
● (Additional materials)
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● Transfer function and difference equation are equivalent descriptions of an linear  
   time-invariant discrete system
● Example

Block diagram representation of LTI discrete 
systems

y(n) = a1 y (n−1 ) + a0 y (n−2) + b0 x(n)

H (z ) =
b0

1 − a1 z
−1

− a2 z
−2

x (n) y (n)

y (n−1)

y (n−2)
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● Direct-form realizations of discrete systems

 - Direct form I

 - Direct form II

● Indirect-form realizations of discrete systems

 - Cascade form

 - Parallel form

Block diagram representation of LTI discrete 
systems
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Direct form realizations of LTI discrete systems

● Direct form I
● The cascade of a                            
   non-recursive system                   
   and a recursive system 

 It requires                                       
   M+N memory cells                        
   M+N additions                               
   M+N+1 multiplications

y (n) = ∑
k=0

M

bk x(n−k) −

−∑
k=1

N

ak y (n−k )

[Proakis, Manolakis]

H (z) = ∑
k=0

M

bk z
−k 1

1 +∑
k=1

N

ak z
−k

v (n)= ∑
k=0

M

bk x (n−k ) y (n)=−∑
k=1

N

ak y (n−k ) + v (n)
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● Direct form II

 (delay lines merge)
● The cascade of a recursive                   
   system and a non-recursive                
   system

 - It requires                                             
     max(N,M) memory cells                    
     N+M additions                                     
     N+M+1 multiplications

y (n) =−∑
k=1

N

ak y (n−k ) +

+ ∑
k=0

M

bk x (n−k)

[Proakis, Manolakis]

Direct form realizations of LTI discrete systems

H (z) =
1

1 +∑
k=1

N

ak z
−k

∑
k=0

M

bk z
−k

w (n)=−∑
k=1

N

akw (n−k ) + x (n) y (n)= ∑
k=0

M

bkw (n−k )

y (n)
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Direct form realizations of LTI discrete systems

● Theoretically there is no difference between direct form I and II
● Both are

 - Simple

 - Visible from the difference equation

● Direct form I

 - Sensitive to quantization error (less in comparison to the form II since it implements the       
      non-recursive part prior to the recursive part)

 - Number of elements is not minimum

● Direct form II

 - Sensitive to quantization error (more in comparison the the form I since it implements the   
     recursive part prior to the non-recursive part)

 - Number of memory cells is minimum (canonical form)
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● Example, direct form I

Direct form realizations of LTI discrete systems

H (z ) =
2 + 4 z−1

+ 2 z−2

1 − 0.75 z−1
+ 0.125 z−2

+

z−1

z−1 => 

2

2

4

=> 

v(n)

v(n) = b0 x(n) + b1 x (n−1) + b2 x(n−2)

y (n) =− a1 y (n−1) − a2 y (n−2) + v (n)

H ( z) =
b0 + b1 z

−1
+ b2 z

−2

1 + a1 z
−1

+ a2 z
−2

v(n)

y (n) = 0.75 y (n−1) − 0.125 y (n−2) +

+ 2 x (n)+ 4 x (n−1) + 2 x (n−2)
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Direct form realizations of LTI discrete systems

● Example, direct form II H (z ) =
2 + 4 z−1

+ 2 z−2

1 − 0.75 z−1
+ 0.125 z−2

+

z−1

z−1 => 

=> 

2

2

4

w (n)

H ( z) =
b0 + b1 z

−1
+ b2 z

−2

1 + a1 z
−1

+ a2 z
−2

w (n) =− a1w (n−1) − a2w(n−2) + x (n)

y (n) = b0w (n) + b1w(n−1) + b2w(n−2)

w (n) = 0.75w (n−1) − 0.125w (n−2) + x (n)

y (n) = 2w (n) + 4w(n−1) + 2w (n−2)

w (n)
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Direct form realizations of LTI discrete systems

● Homework

 Draw the direct form I and direct form II realization for the following systems

y (n) = 0.5 y (n−1) + 2x (n)

y (n) = 4 y (n−1) − 4 y (n−2) + 2 x (n−1)

y (n) − 2.5 y (n−1) = −y (n−2) + x (n) − 5 x(n−1) + 6 x (n−2)
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● Direct form II implementation of IIR systems requires minimum number of delay              
   elements and minimum number of multiplications
● However, direct form II is error-prone IIR filter implementation

● How to realize large systems?

● To minimize the errors (overflow, quantization) associated with finite-word-length width                   
   implement

 - Cascade form of low order systems

 - Parallel form of low order systems

Direct form realizations of LTI discrete systems
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● Cascade form

 - Practical form for cascade implementation using 2nd order sections

 - Base for each 2nd order section is again the direct form II

● Systems (filters) with real outputs have conjugate symmetric roots

 

● Can always be grouped into 2nd order terms with real coefficients

 

Basic structures for IIR systems: cascade form

H ( z) =
1

(1 − (α + jβ ) z−1
) (1 − (α − jβ ) z−1

)

(1 − 2 α z−1
+ (α

2
+β

2
) z−2

)

H (z) =
∑
k=0

M

bk z
−k

1 + ∑
k=1

N

ak z
−k

=∏
k=1

N C b0 k + b1k z
−1

+ b2k z
−2

1 + a1 k z
−1

+ a2 k z
−2

= H 1( z) . H 2(z) ...H NC
( z)

H ( z) =
1

(1 − (2 r cosθ ) z−1
+ r2 z−2

)
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● Cascade form

 - Base for each 2nd order section is again the direct form II

 

 

Basic structures for IIR systems: cascade form

H (z) =
∑
k=0

M

bk z
−k

1 + ∑
k=1

N

ak z
−k

=∏
k=1

N C b0 k + b1k z
−1

+ b2 k z
−2

1 + a1 k z
−1

+ a2 k z
−2

= H 1( z) . H 2(z)...H NC
( z)

−−

−

−

− −
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● How to further reduce number of multiplications?

 → Forward gain factored out !

Basic structures for IIR systems: cascade form

H (z) =
∑
k=0

M

bk z
−k

1 + ∑
k=1

N

ak z
−k

= b0 ∏
k=1

NC 1 +
~b1k z

−1
+

~b2k z
−2

1 + a1k z
−1

+ a2k z
−2

= b0 .
~H 1 .

~H 2 ... ~HNC

b0

~

~

~

~ ~

~
−−

−

−

− −
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● Previous example (2nd order system)

● Even more simplified (cascade of two 1st order sections, base: the direct form II)

Basic structures for IIR systems: cascade form

H ( z) =
2 + 4 z−1

+ 2 z−2

1 − 0.75 z−1
+ 0.125 z−2

= 2
1 + 2 z−1

+ 1 z−2

1 − 0.75 z−1
+ 0.125 z−2

H (z) =
2 + 4 z−1

+ 2 z−2

1 − 0.75 z−1
+ 0.125 z−2

= 2
(1 + 1 z−1

)

(1 − 0.5 z−1
)

(1 + z−1
)

(1 − 0.25 z−1
)

2

2

[Oppenheim, Schafer]
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Basic structures for IIR systems: cascade form

● How to pick pairs of roots for the 2nd order sections to optimizenumerical properties  
   (overflow, quantization)?

 - Avoid very large values (overflow) and very small values (quantization)

 - Use Matlab's  zp2sos()  or  tf2sos()  functions which convert a transfer function into 2nd order     
     sections, and returns the coefficients of each section and the gain

 - The functions select the poles farthest from the unit circle for the front 2nd order sections           
     (or vice versa)
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Basic structures for IIR systems: cascade form
● Laboratory

 Given the following system

 

 - Realize it as a cascade of direct form II 2nd order sections and draw the cascade

 - Write transfer function of each of the resulting 2nd order sections 

H ( z) =
10 +

25
3
z−1

− 20 z−2
+

20
3
z−3

1 −
15
8
z−1

+
47
32
z−2

−
17
32
z−3

+
3

64
z−4

● MATLAB

 >>  [sos, g] = zp2sos(Z, P, K);  % Converts a discrete-time zero-pole-gain representation

 >>  [sos, g] = tf2sos(b, a);       % Converts a transfer function representation (b, a)

 >>                                                %  →  to an equivalent second-order section representation

 >>                                                % sos – matrix of coefficients of second order sections

 >>                                                % g – gain (b0)

 >>  % Recall also

 >>  [Z, P, K] = tf2zpk(b, a);
H (z) =

∑
k=0

M

bk z
−k

1 + ∑
k=1

N

ak z
−k
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● Parallel form

 - Practical form for parallel                                                                                                                                  
      implementation by grouping                                                                                                                            
      the real-valued poles in pairs

  - Base for each term under the                                                                                                                           
      sum is the direct form II

H (z) =∑
k=0

N P

C k z
−k

+ ∑
k=1

NS e0 k + e1 k z
−1

1 + a1 k z
−1

+ a2 k z
−2

Basic structures for IIR systems: parallel form

H (z) =∑
k=0

N P

C k z
−k

+ ∑
k=1

NS

H k (z)

x (n) y (n)

−

−

−

−

−

−
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● Example, partial fraction expansion

● After combining poles

Basic structures for IIR systems: parallel form

H (z) =
1 + 2 z−1

+ z−2

1 − 0.75 z−1
+ 0.125 z−2

= 8 +
18

(1−0.5 z−1
)
−

25

(1−0.25 z−1
)

H (z) = 8 +
−7 + 8 z−1

1 − 0.75 z−1
+ 0.125 z−2

x (n)

x (n) y (n)

y (n)

[Oppenheim, Schafer]
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● Direct form I and II

 - Simple implementation, visible from difference equation

 - Quantization sensitive, larger number of bits

● Cascade or parallel form

 - Less quantization sensitive, can use lower number of bits

 - Can reuse and connects existing systems

 - Difficult to combine (find proper) pairs of roots

● Cascade form

 - Good for pipeline computation, high through-put

 - Can compose bandpass and bandstop filters using lowpass and highpass filters

● Parallel form

 - Fast parallel computation, no noise amplification (more robust)

 - Can compose filter banks, spectral analyzers

Comparison of structures
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● Transposing does not change the input- output relation

● Transposing (the transposition theorem)

 1) Reverse the directions of all branches;  2) Interchange input and output nodes

● Example, 2nd order section, direct form II and its transpose

 

● The transposed form is less susceptible to the errors due to finite precision arithmetic in               
   comparison to the direct form II since it implements non-recursive part prior to the recursive      
   one. 

● In addition, factors out forward gain

Transposing

Transpose

[Oppenheim, Schafer]

−

−

−

−
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Second order modules for discrete-time systems
● Structures and transfer functions
● Regular direct form II, and Transposed direct form II

● Verify their transfer functions ! 

[Proakis, Manolakis]

= H T (z ) =
b0 + b1 z

−1
+ b2 z

−2

1 + a1 z
−1

+ a2 z
−2

y (n) = b0 x (n) + w1(n−1)

w1(n) = b1 x (n) − a1 y(n) + w2(n−1)

w2(n)= b2 x (n) − a2 y (n)

H II( z) =
b0 + b1 z

−1
+ b2 z

−2

1 + a1 z
−1

+ a2 z
−2

w (n) =−a1w (n−1) − a2w(n−2) + x(n)

y (n) = b0w (n) + b1w(n−1) + b2w (n−2)

w (n)
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● Homework

 - Draw the direct form I and direct form II realization for the following systems

 - Transpose the direct form II realizations

 - Verify transfer functions of direct form II and transposed form

y (n) = 0.5 y (n−1) + 2x (n)

y (n) = 4 y (n−1) − 4 y (n−2) + 2 x (n−1)

y (n) − 2.5 y (n−1) = −y (n−2) + x (n) − 5 x(n−1) + 6 x (n−2)

Second order modules for discrete-time systems
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● Homework

 The transfer function of a 2nd order system is given by

 - Draw the direct form II realization of this system

 - What is the condition for this system to be stable?

H (z) =
−r sinθ

z2
− 2 r cosθ . z + r2

Second order modules for discrete-time systems
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● Direct form I – Tapped Delay Line

● Transpose of direct form I gives direct form II

Basic structures for FIR systems: direct forms

H (z) = ∑
k=0

M

hk z
−k

[Oppenheim, Schafer]
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Basic structures for FIR systems: direct forms

h(n) = h(−n) , n= 0,1, ... , M

y (n) = ∑
k=0

M

h(k )x (n−k) = ∑
k=0

M /2−1

h(k) (x(n−k) + x(n−M+k )) + h(M /2) x(n−M /2)

● Direct form realization of linear-phase FIR system (M+1 odd)
● The structure takes advantage of the symmetry of the impulse response

● Half the number of multiplications

[Oppenheim, Schafer]
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● Factoring the polynomial systems function

Basic structures for FIR systems: cascade form

H (z) =∑
k=0

M

hk z
−k

= ∏
k=1

M S

(b0 k + b1 k z
−1

+ b2 k z
−2

)

[Oppenheim, Schafer]
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(Additional materials)

● Signal flow graph representation

● Second order modules for discrete-time systems
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Signal flow graph representation

[Oppenheim, Schafer]

w1(n) = aw4(n) + x(n)
w2(n) = w1(n)

w3(n) = b0w2(n) + b1w 4(n)
w4(n) = w2(n−1)

y (n) = w3(n)

w1(n) = aw1(n−1) + x(n)

y (n) = b0w1(n) + b1w1(n−1)

● Similar to block diagrams
● A network of directed branches connected at nodes

● Example, 1st order section, representation of direct form II as flow graph
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● Additional task

 The transfer function of a digital filter is given as follows

 - Discuss the stability of this filter

 - Find the amplitude values of the frequency response at  ω = 0,  π/4, π/2,  3π/4, and  π  

 - Draw the frequency response  

 - Sketch the block diagram of the direct form II realization of this filter 

       

H (z) =
0.1669 + 0.3207 z−1

+ 0.1943 z−2

1 + 1.7935 z−1
+ 0.8410 z−2

Second order modules for discrete-time systems
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